EMBRYOPSIDA Pirani & Prado

Gametophyte dominant, independent, multicellular, initially ±globular; showing gravitropism; acquisition of phenylalanine lysase [PAL], phenylpropanoid metabolism [lignans +, flavonoids + (absorbtion of UV radiation)], xyloglucans in primary cell wall with distinctive side chains; plant poikilohydrous [protoplasm dessication tolerant], ectohydrous [free water outside plant physiologically important]; thalloid, leafy, with single-celled apical meristem, tissues little differentiated, rhizoids +, unicellular; chloroplasts several per cell, pyrenoids 0; glycolate metabolism in leaf peroxisomes [glyoxysomes]; centrioles/centrosomes in vegetative cells 0, microtubules with γ-tubulin along its length [?here], interphase microtubules form hoop-like system; metaphase spindle anastral, predictive preprophase band of microtubules [where cell plate will join parental cell wall], phragmoplast + [cell wall deposition spreading from around the spindle fibres], plasmodesmata +; antheridia and archegonia jacketed, surficial; blepharoplast +, centrioles develop de novo, bicentriole pair coaxial, separate at midpoint, centrioles rotate, associated with basal bodies of cilia, multilayered structure + [4 layers: L1, L4, tubules; L2, L3, short vertical lamellae] (0), spline + [tubules from L1 encircling spermatid], basal body 200-250 nm long, associated with amorphous electron-dense material, microtubules in basal end lacking symmetry, stellate array of filaments in transition zone extended, axonemal cap 0 [microtubules disorganized at apex of cilium]; male gametes [spermatozoids] with a left-handed coil, cilia 2, lateral; oogamy; sporophyte multicellular, cuticle +, plane of first cell division transverse [with respect to long axis of archegonium/embryo sac], sporangium and upper part of seta developing from epibasal cell [towards the archegonial neck, exoscopic], with at least transient apical cell [?level], initially surrounded by and dependent on gametophyte, placental transfer cells +, in both sporophyte and gametophyte, wall ingrowths develop early; suspensor/foot +, cells at foot tip somewhat haustorial; sporangium +, single, terminal, dehiscence longitudinal; meiosis sporic, monoplastidic, MTOC [MTOC = microtubule organizing centre] associated with plastid, sporocytes 4-lobed, cytokinesis simultaneous, preceding nuclear division, quadripolar microtubule system +; wall development both centripetal and centrifugal, sporopollenin + laid down in association with trilamellar layers [white-line centred lamellae; tripartite lamellae], >1000 spores/sporangium; nuclear genome size <1.4 pg, main telomere sequence motif TTTAGGG, LEAFY and KNOX1 and KNOX2 genes present, ethylene involved in cell elongation; chloroplast genome with close association between trnLUAA and trnFGAA genes, precursor for starch synthesis in plastid.

Many of the bolded characters in the characterization above are apomorphies of subsets of streptophytes along the lineage leading to the embryophytes, not apomorphies of crown-group embryophytes per se.

All groups below are crown groups, nearly all are extant. Characters mentioned are those of the immediate common ancestor of the group, [] contains explanatory material, () features common in clade, exact status unclear.


Abscisic acid, L- and D-methionine distinguished metabolically; sporophyte with polar transport of auxins, class 1 KNOX genes expressed in sporangium alone; sporangium wall 4≤ cells across [≡ eusporangium], tapetum +, secreting sporopollenin, which obscures outer white-line centred lamellae, columella +, developing from endothecial cells; stomata +, on sporangium, anomocytic, cell lineage that produces them with symmetric divisions [perigenous]; underlying similarities in the development of conducting tissue and of rhizoids/root hairs; spores trilete; shoot meristem patterning gene families expressed; MIKC, MI*K*C* genes, post-transcriptional editing of chloroplast genes; gain of three group II mitochondrial introns, mitochondrial trnS(gcu) and trnN(guu) genes 0.

[Anthocerophyta + Polysporangiophyta]: xyloglucans in the primary cell wall with fucosylated subunits; gametophyte leafless; archegonia embedded/sunken [on;y neck protruding]; sporophyte long-lived, chlorophyllous; cell walls with xylans.


Sporophyte dominant, branched, branching apical, dichotomous, potentially indeterminate; vascular tissue +; stomata on stem; sporangia several, each opening independently; spore walls not multilamellate [?here].


Sporophyte with photosynthetic red light response; (condensed or nonhydrolyzable tannins/proanthocyanidins +); plant homoiohydrous [water content of protoplasm relatively stable]; control of leaf hydration passive; plant endohydrous [physiologically important free water inside plant]; (condensed or nonhydrolyzable tannins/proanthocyanidins +); xylans in secondary walls of vascular and mechanical tissue; lignins +; stem apex multicellular, with cytohistochemical zonation, plasmodesmata formation based on cell lineage; tracheids +, in both protoxylem and metaxylem, G- and S-types; sieve cells + [nucleus degenerating]; endodermis +; leaves/sporophylls spirally arranged, blades with mean venation density ca 1.8 mm/mm2 [to 5 mm/mm2], all epidermal cells with chloroplasts; sporangia adaxial, columella 0; tapetum glandular; ?position of transfer cells; MTOCs not associated with plastids, basal body 350-550 nm long, stellate array in transition region initially joining microtubule triplets; suspensor +, shoot apex developing away from micropyle/archegonial neck [from hypobasal cell, endoscopic], root lateral with respect to the longitudinal axis of the embryo [plant homorhizic].


Sporophyte endomycorrhizal [with Glomeromycota]; growth ± monopodial, branching spiral; roots +, endogenous, positively geotropic, root hairs and root cap +, protoxylem exarch, lateral roots +, endogenous; G-type tracheids +, with scalariform-bordered pits; leaves with apical/marginal growth, venation development basipetal, growth determinate; sporangium dehiscence by a single longitudinal slit; cells polyplastidic, MTOCs diffuse, perinuclear, migratory; blepharoplasts +, paired, with electron-dense material, centrioles on periphery, male gametes multiciliate; chloroplast long single copy ca 30kb inversion [from psbM to ycf2]; LITTLE ZIPPER proteins.


Sporophyte woody; stem branching lateral, meristems axillary; lateral root origin from the pericycle; cork cambium + [producing cork abaxially], vascular cambium bifacial [producing phloem abaxially and xylem adaxially].


Plants heterosporous; megasporangium surrounded by cupule [i.e. = unitegmic ovule, cupule = integument]; pollen lands on ovule; megaspore germination endosporic [female gametophyte initially retained on the plant].


Plant evergreen; nicotinic acid metabolised to trigonelline, (cyanogenesis via tyrosine pathway); primary cell walls rich in xyloglucans and/or glucomannans, 25-30% pectin [Type I walls]; lignins particularly with guaiacyl and p-hydroxyphenyl [G + H] units [sinapyl units uncommon, no Maüle reaction]; root stele with xylem and phloem originating on alternate radii, cork cambium deep seated; stem apical meristem complex [with quiescent centre, etc.], plasmodesma density in SAM 1.6-6.2[mean]/μm2 [interface-specific plasmodesmatal network]; eustele +, protoxylem endarch, endodermis 0; wood homoxylous, tracheids and rays alone, tracheid/tracheid pits circular, bordered; mature sieve tube/cell lacking functioning nucleus, sieve tube plastids with starch grains; phloem fibres +; cork cambium superficial; leaf nodes 1:1, a single trace leaving the vascular sympodium; leaf vascular bundles amphicribral; guard cells the only epidermal cells with chloroplasts, stomatal pore with active opening in response to leaf hydration, control by abscisic acid, metabolic regulation of water use efficiency, etc.; axillary buds +, exogenous; prophylls two, lateral; leaves with petiole and lamina, development basipetal, lamina simple; sporangia borne on sporophylls; spores not dormant; microsporophylls aggregated in indeterminate cones/strobili; grains monosulcate, aperture in ana- position [distal], primexine + [involved in exine pattern formation with deposition of sporopollenin from tapetum there], exine and intine homogeneous, exine alveolar/honeycomb; ovules with parietal tissue [= crassinucellate], megaspore tetrad linear, functional megaspore single, chalazal, sporopollenin 0; gametophyte ± wholly dependent on sporophyte, development initially endosporic [apical cell 0, rhizoids 0, etc.]; male gametophyte with tube developing from distal end of grain, male gametes two, developing after pollination, with cell walls; female gametophyte initially syncytial, walls then surrounding individual nuclei; embryo cellular ab initio, suspensor short-minute, embryonic axis straight [shoot and root at opposite ends; plant allorhizic], cotyledons 2; embryo ± dormant; ycf2 gene in inverted repeat, mitochondrial trans- nad2i542g2 and coxIIi3 introns present; whole nuclear genome duplication [ζ - zeta - duplication], two copies of LEAFY gene, PHY gene duplications [three - [BP [A/N + C/O]] - copies], 5.8S and 5S rDNA in separate clusters.


Lignans, O-methyl flavonols, dihydroflavonols, triterpenoid oleanane, apigenin and/or luteolin scattered, [cyanogenesis in ANA grade?], lignin also with syringyl units common [G + S lignin, positive Maüle reaction - syringyl:guaiacyl ratio more than 2-2.5:1], hemicelluloses as xyloglucans; root apical meristem intermediate-open; stele di- to pentarch [oligarch], pith relatively inconspicuous, lateral roots arise opposite or immediately to the side of [when diarch] xylem poles; origin of epidermis with no clear pattern [probably from inner layer of root cap], trichoblasts [differentiated root hair-forming cells] 0, hypodermis suberised and with Casparian strip [= exodermis]; shoot apex with tunica-corpus construction, tunica 2-layered; starch grains simple; primary cell wall mostly with pectic polysaccharides, poor in mannans; tracheid:tracheid [end wall] plates with scalariform pitting, wood parenchyma +; sieve tubes enucleate, sieve plate with pores (0.1-)0.5-10< µm across, cytoplasm with P-proteins, not occluding pores of plate, companion cell and sieve tube from same mother cell; sugar transport in phloem passive; nodes 1:?; dark reversal Pfr → Pr; protoplasm dessication tolerant [plant poikilohydric]; stomata brachyparacytic [ends of subsidiary cells level with ends of pore], outer stomatal ledges producing vestibule, reduction in stomatal conductance with increasing CO2 concentration; lamina formed from the primordial leaf apex, margins toothed, development of venation acropetal, overall growth ± diffuse, secondary veins pinnate, fine venation hierarchical-reticulate, (1.7-)4.1(-5.7) mm/mm2, vein endings free; flowers perfect, pedicellate, ± haplomorphic, protogynous; parts free, numbers variable, development centripetal; P +, ?insertion, members each with a single trace, outer members not sharply differentiated from the others, not enclosing the floral bud; A many, filament not sharply distinguished from anther, stout, broad, with a single trace, anther introrse, tetrasporangiate, sporangia in two groups of two [dithecal], each theca dehiscing longitudinally by a common slit, ± embedded in the filament, walls with at least outer secondary parietal cells dividing, endothecium +, cells elongated at right angles to long axis of anther; tapetal cells binucleate; microspore mother cells in a block, microsporogenesis successive, walls developing by centripetal furrowing; pollen subspherical, tectum continuous or microperforate, ektexine columellate, endexine lamellate only in the apertural regions, thin, compact, intine in apertural areas thick, pollenkitt +; nectary 0; carpels present, superior, free, several, ascidiate [postgenital occlusion by secretion], stylulus at most short [shorter than ovary], hollow, cavity not lined by distinct epidermal layer, stigma ± decurrent, carinal, dry, extragynoecial compitum +; ovules few [?1]/carpel, marginal, anatropous, bitegmic, micropyle endostomal, outer integument 2-3 cells across, often largely subdermal in origin, inner integument 2-3 cells across, often dermal in origin, parietal tissue 1-3 cells across, nucellar cap?; megasporocyte single, hypodermal, functional megaspore lacking cuticle; female gametophyte lacking chlorophyll, not photosynthesising, four-celled [one module, nucleus of egg cell sister to one of the polar nuclei]; ovule not increasing in size between pollination and fertilization; pollen grains land on stigma, bicellular at dispersal, mature male gametophyte tricellular, germinating in less than 3 hours, pollen tube elongated, unbranched, growing between cells, growth rate (20-)80-20,000 µm/hour, apex of pectins, wall with callose, lumen with callose plugs, penetration of ovules via micropyle [porogamous], whole process takes ca 18 hours, distance to first ovule 1.1-2.1 mm; male gametes lacking cell walls, ciliae 0, siphonogamy; double fertilization +, ovules aborting unless fertilized; P deciduous in fruit; mature seed much larger than fertilized ovule, small [], dry [no sarcotesta], exotestal; endosperm +, cellular, development heteropolar [first division oblique, micropylar end initially with a single large cell, divisions uniseriate, chalazal cell smaller, divisions in several planes], copious, oily and/or proteinaceous, embryo short [<¼ length of seed]; plastid and mitochondrial transmission maternal; Arabidopsis-type telomeres [(TTTAGGG)n]; nuclear genome very small [1C = <1.4 pg, 1 pg = 109 base pairs], whole nuclear genome duplication [ε/epsilon event]; ndhB gene 21 codons enlarged at the 5' end, single copy of LEAFY and RPB2 gene, knox genes extensively duplicated [A1-A4], AP1/FUL gene, palaeo AP3 and PI genes [paralogous B-class genes] +, with "DEAER" motif, SEP3/LOFSEP and three copies of the PHY gene, [PHYB [PHYA + PHYC]]; chloroplast chlB, -L, -N, trnP-GGG genes 0.

[NYMPHAEALES [AUSTROBAILEYALES [[CHLORANTHALES + MAGNOLIIDS] [MONOCOTS [CERATOPHYLLALES + EUDICOTS]]]]]: wood fibres +; axial parenchyma diffuse or diffuse-in-aggregates; pollen monosulcate [anasulcate], tectum reticulate-perforate [here?]; ?genome duplication; "DEAER" motif in AP3 and PI genes lost, gaps in these genes.

[AUSTROBAILEYALES [[CHLORANTHALES + MAGNOLIIDS] [MONOCOTS [CERATOPHYLLALES + EUDICOTS]]]]: vessel elements with scalariform perforation plates in primary xylem; essential oils in specialized cells [lamina and P ± pellucid-punctate]; tension wood + [reaction wood: with gelatinous fibres, g-fibres, on adaxial side of branch/stem junction]; tectum reticulate; anther wall with outer secondary parietal cell layer dividing; nucellar cap + [character lost where in eudicots?]; 12BP [4 amino acids] deletion in P1 gene.

[[CHLORANTHALES + MAGNOLIIDS] [MONOCOTS [CERATOPHYLLALES + EUDICOTS]]] / MESANGIOSPERMAE: benzylisoquinoline alkaloids +; sesquiterpene synthase subfamily a [TPS-a] [?level], polyacetate derived anthraquinones + [?level]; outer epidermal walls of root elongation zone with cellulose fibrils oriented transverse to root axis; P more or less whorled, 3-merous [?here]; pollen tube growth intra-gynoecial [extragynoecial compitum 0]; carpels plicate [?here]; embryo sac bipolar, 8 nucleate, antipodal cells persisting; endosperm triploid.

[MONOCOTS [CERATOPHYLLALES + EUDICOTS]]: (extra-floral nectaries +); (veins in lamina often 7-17 mm/mm2 or more [mean for eudicots 8.0]); (stamens opposite [two whorls of] P); (pollen tube growth fast).   Back to Main Tree

Age. This node has been dated to 147-143 m.y.a. (Leebens-Mack et al. 2005). Chaw et al. (2004: 61 chloroplast genes, sampling poor) dated it to 150-140 m.y.a., Moore et al. (2010: 95% highest posterior density) estimated an age of (142-)135(-127) m.y., Clarke et al. (2011) an age of (161-)137(-124) m.y.; 138-134 m.y. was the estimate in Mennes et al. (2013), 145 or 142.3 m.y. in Naumann et al. (2013), (158.5-)ca 143, 138.4(-130.5) m.y. in Xue et al. (2012), ca 135.8 m.y.a. in Magallón et al. (2015) and (143-)138, 131(-126) m.y. in Hertweck et al. (2015). Ages of ca 172.4 m.y. in Tank et al. (2015: Table S2), ca 213 m.y. in Z. Wu et al. (2014) and (394-)301(-208) m.y. in Zimmer et al. (2007) are much higher, while the ages of around (126.8-)125.1(-124.1) m.y. in Iles et al. (2014) are the lowest.

Fossil-based estimates are somewhat younger, ca 100 m.y. (Crepet et al. 2004: monocots sister to magnoliids) or at least 110 m.y. (e.g. Friis et al. 2010: see below).

Evolution. Genes & Genomes. Taxa in which DEF-like proteins cannot form heterodimers predominate in this clade (Melzer et al. 2014).

Chemistry, Morphology, etc. Details of the exact position and magnitude of changes in characters like leaf venation density and pollen tube growth are still provisional (see Boyce et al. 2008; Williams 2008 for more details). The stamen-perianth member pairing, as well as the fact that the bases of members of a perianth whorl do not completely surround the floral apex, are two features very common in monocots, but they are rather more scattered in the eudicot clades up to Gunnerales, after which they are pretty much non-existent. Lauraceae may also be interpreted as having this sort of flower. Authors (e.g. Chen et al. 2007) have drawn attention to the occurrence of dimery and A-T pairing in the grade Proteales to Gunnerales. Where stamen-perianth pairing is to be placed on the tree is uncertain.

Phylogeny. Relationships between the lineages immediately above the basal pectinations in the main tree, the ANITA grade (Amborellales, Nymphaeales and Austrobaileyales here), are slowly being clarified. For further information, see the mesangiosperm node. Chloranthales, eudicots, magnoliids, and Ceratophyllales are the other clades involved. There is, however, some evidence that Ceratophyllales are sister to eudicots.


Plant herbaceous, perennial, rhizomatous, growth sympodial; non-hydrolyzable tannins [(ent-)epicatechin-4] +, neolignans, benzylisoquinoline alkaloids 0, hemicelluloses as xylans; root apical meristem?; epidermis developed from outer layer of cortex; trichoblasts in atrichoblast [larger cell]/trichoblast cell pairs, the former further from apical meristem, in vertical files; endodermal cells with U-shaped thickenings; cork cambium [uncommon] superficial; stele oligo- to polyarch, medullated [with prominent pith], lateral roots arise opposite phloem poles; stem primary thickening meristem +; vascular bundles scattered, (amphivasal), vascular cambium 0 [bundles closed]; tension wood 0; vessel elements in roots with scalariform and/or simple perforations; tracheids only in stems and leaves; sieve tube plastids with cuneate protein crystals alone; stomata parallel to the long axis of the leaf, in lines; prophyll single, adaxial; leaf blade linear, main venation parallel, the veins joining successively from the outside at the apex and forming a fimbrial vein, transverse veinlets +, unbranched [leaf blade characters: ?level], vein/veinlet endings not free, margins entire, Vorläuferspitze +, base broad, ensheathing the stem, sheath open, petiole 0; inflorescence terminal, racemose; flowers 3-merous [6-radiate to the pollinator], polysymmetric, pentacyclic; P = T, each with three traces, median T of outer whorl abaxial, aestivation open, members of whorls alternating, [pseudomonocyclic, each T member forming a sector of any tube]; stamens = and opposite each T member [primordia often associated, and/or A vascularized from tepal trace], anther and filament more or less sharply distinguished, anthers subbasifixed, endothecium from outer secondary parietal cell layer, inner secondary parietal cell layer dividing; pollen reticulations coarse in the middle, finer at ends of grain, infratectal layer granular; G [3], with congenital intercarpellary fusion, opposite outer tepals [thus median member abaxial], placentation axile; outer integument often largely dermal in origin, parietal tissue 1 cell across; antipodal cells persistent, proliferating; fruit a loculicidal capsule; seed small to medium sized [mean = 1.5 mg], testal; embryo long, cylindrical, cotyledon 1, apparently terminal, with a closed sheath, unifacial [hyperphyllar], both assimilating and haustorial, plumule apparently lateral; primary root unbranched, not very well developed, stem-borne roots numerous, hypocotyl short, (collar rhizoids +); no dark reversion Pfr → Pr; duplication producing monocot LOFSEP and FUL3 genes [latter duplication of AP1/FUL gene], PHYE gene lost. - 11 orders, ca 78 families, 60,100 species.

Age. Molecular ages of crown-group monocots have been variously estimated at ca 200±20 m.y. (Savard et al. 1994), ca 189 m.y. (Z. Wu et al. 2014), 160±16 m.y. (Goremykin et al. 1997), 135-131 m.y. (Leebens-Mack et al. 2005), or 133.8-124 m.y. (Moore et al. 2007). Bremer (2000b) suggested that this node could be dated to (147-)134(-121) m.y.a, an age also used for dating monocot groups in general (Janssen & Bremer 2004); Magallón and Castillo (2009) suggest ca 177 m.y. or 127 m.y. for this split while ca 133.2 m.y.a. is the age in Magallón et al. (2015); Bell et al. (2010) estimate ages of (157-)146, 130(-109) m.y.; Moore et al. (2010) offer an age of (129-)122(-117) m. years. Other suggestions range from (191-)164, 156(-139) m.y.a. (Smith et al. 2010: c.f. Table S3, slightly younger estimates) to 228.6-128.3 m.y. (Nauheimer et al. 2012: Table S4), although most estimates there are in the 150-139 m.y. range. An age of (174-)169, 134(-119) m.y. was proposed by Zeng et al. (2014), Zhang et al. (2012) suggested an age of (142-)124(-108) m.y., and similar ages (ca 125.1 or 121.5 m.y.) are suggested by Xue et al. (2012). Magallón et al. (2013) offer ages of around (154.4-)137.1, 134.1(-123.4) m.y., as little as as 106.7 m.y. is the age in Naumann et al. (2013), (110.5-)104.2(-98) m.y. in Iles et al. (2014), 138-134 and 136-132 m.y. in Mennes et al. (2013, 2015 respectively), and (143-)138, 131(-126) m.y. in Hertweck et al. (2015), while estimates in Schneider et al. (2004) pretty much cover all possibilities.

An early fossil-based estimate of the age of stem monocots was only ca 98 m.y. and that of crown monocots ca 90 m.y. (Crepet et al. 2004). Fossil evidence suggested to Jud and Wing (2012) that monocots and eudicots were present ca 125-119 m.y.a. by the Early Aptian; if monocots and eudicots are sister taxa, their stem group ages will have to be at least as old as the tricolpate pollen that characterises eudicots.

Liliacidites pollen, boat-shaped, monosulcate, and with reticulate sculpture that becomes finer at the ends of the grain, can be assigned to monocots, Liliacidites sp. A being dated to 125-113 m.y.a. (e.g. Doyle 2014b; Iles et al. 2015). Leaves of Acaciaephyllum, considered to be monocots, are also well known in the fossil record (Doyle et al. 2008; Doyle & Upchurch 2014; Doyle 2014b). For these and other fossil monocots, see Gandolfo et al. (2000), Friis et al. (2006b, 2011), Doyle et al. (2008) and especially Iles et al. (2015).

Note: Boldface denotes possible apomorphies, (....) denotes a feature common in the clade, exact status uncertain, [....] includes explanatory material. Note that the particular node to which many characters, particularly the more cryptic ones, should be assigned is unclear. This is partly because homoplasy is very common, in addition, basic information for all too many characters is very incomplete, frequently coming from taxa well embedded in the clade of interest and so making the position of any putative apomorphy uncertain. Then there are the not-so-trivial issues of how character states are delimited and ancestral states are reconstructed (see above).

Evolution. Divergence & Distribution. For diversification rates in monocots, see Hertweck et al. (2015); note their caveats about ages and life forms.

If Ceratophyllales are sister to monocots, synapomorphies like the herbaceous habit, absence of vascular cambium, etc., could be moved down a node, but evidence for such a relationship is not strong (see Jansen et al. 2007; Saarela et al. 2007; Moore et al. 2007, also the discussion under mesangiosperms). Indeed, monocots, whatever their relationships, appear to be so different from other angiosperms that relating their morphology, anatomy and development to that of broad-leaved angiosperms has been difficult (e.g. Zimmermann & Tomlinson 1972; Tomlinson 1995). Thus it has been suggested that vessels in monocots and those in other angiosperms evolved independently (Cheadle 1943a, 1953; c.f. Carlquist 2012a). Ceratophyllales are even more remarkable in both their vegetative and floral morphology.

Nymphaeales are aquatics that were also once believed to be close to monocots, and they now include the ex-monocot Hydatellaceae. Similarities between monocots and Nymphaeales and Ceratophyllales are likely to be convergences, and their common ancestors with other angiosperms are likely to have been plants with broad, petiolate leaves and a more or less woody stem with conventional lateral thickening meristems, cork and vascular cambia (e.g. Doyle 2013; see also early angiosperm evolution).

Note that over half the putative synapomorphies for monocots in Table 4.1 of Soltis et al. (2005b) may be best assigned elsewhere. The nature of the anther-filament junction has not been optimised in this part of the tree. For pollen and tapetum evolution, see Furness (2013), and for pollen evolution, see Luo et al. (2015). For the evolution of syncarpy and of septal nectaries, see Sokoloff et al. (2013: various trees, various definitions). Septal nectary morphology (see e.g. Daumann 1970; Schmid 1985; van Heel 1988; Vogel 1998b; Smets et al. 2000; Rudall 2002; Remizowa et al. 2006a) is rather variable and is difficult to categorise when the carpels are more or less free. There are non-secreting slits in the ovary septae of Acorus, and if they are "really" septal nectaries, that feature becomes a synapomorphy (subsequently lost many, many times) of monocots as a whole. Both Tofieldiaceae, sister to other Alismatales, and Acoraceae have distinctive isobifacial leaves, but there is considerable variation in foliar morphology in Alismatales and it is likely that these leaves evolved in parallel in the two (c.f. also Luo et al. 2016).

Ecology & Physiology. Monocot vegetative morphology, their ecology, and their physiology are all closely linked. It has long been noted that many of their distinctive features are compatible with an origin from aquatic or hydrophilous ancestors (e.g. Henslow 1893 and references: the style of comparison and suggested mechanisms are interesting!). The scattered vascular bundles in the stem, long linear and flexible leaves, absence of secondary thickening, clusters of adventitious roots rather than a single, branched taproot (see nature of substrate: mud), even the sympodial habit, etc., are all compatible with such an origin (see Mangin 1882 for "adventitious" roots in monocots; Schutten et al. 2005 and references for the biomechanics of living in water), and Carlquist (2012a) discussed variation in xylem anatomy in context of a more or less aquatic origin of the clade. Many members of the first two pectinations in the monocot tree, Acorales and Alismatales, are water or marsh plants or at least prefer to grow in damp conditions. Indeed, aquatic herbs, unlike terrestrial herbs, often entirely lose the capacity to produce cambium, and reacquisition of a "normal" bifacial cambium in such plants is unknown (Groover 2005; Feild & Arens 2007).

In their analysis of major functional traits in vascular plants, Cornwell et al. (2014) noted that plants above the first node of the monocot branch were notably small, although Acoraceae do not differ from other monocots in this feature; palms and to a lesser extent bambusoid grasses show a marked increase in plant size. Most monocots, like Acoraceae themselves, are perennial, sympodial plants (Holttum 1955; see also Levichev 2013) that form tufts of leaves in part of each growth cycle and/or are geophytes, and their internode elongation is slight. The stem apex is under or at the surface of the ground except at flowering time. So-called "adventitious" roots develop from the growing stem, the older part of the stem decaying along with any roots, primary or stem-borne, it may have. The flowering stem commonly has elongated internodes, and the stem's response to gravity in the absence of secondary thickening is interesting. In some Poales (Cyperaceae, Juncaceae, Poaceae), at least, adjustments are made by an intercalary meristem at the base of in the internodal zone. For the role of the leaf sheath in supporting the stem under such conditions, see Kempe et al. (2013 and references).

The hydraulic systems of root and stem are not in direct contact because there is usually no secondary thickening (Carlquist 2009). Distinctive monocot-type secondary thickening (Rudall 1995b for records; see below) is very infrequent, although somewhat less so in Asparagales. Since the major monocot woody clades, Arecaceae and Poaceae-Bambusoideae, lack any secondary thickening (but c.f. Botánico & Angyalossy 2013), the xylem and phloem in their vascular tissue must be very old, but in both groups - perhaps the latter in particular - root pressures are extremely high, which may at least help in embolism repair after xylem cavitation develops (Davis 1961; Cao et al. 2012). It is unclear if high root pressures, perhaps associated with tolerance to cavitation, occur throughout the monocots (Cao et al. 2012), however, root pressures listed by Fisher et al. (1997) for vines and woody species show no differences between monocots and other angiosperms.

A number of monocots are plants of quite considerable size, some being giant herbs or large trees, and there is a period of establishment growth (e.g. Tomlinson & Esler 1972; Bell & Bryan 2008), between germination and the mature (flower-producing) stage. It usually occurs before stem elongation, and the apical meristem increases in size and there are often changes in leaf morphology. Burtt (1972) noted that during germination in monocots the plumule is frequently carried below the surface of the ground; a tube formed by the cotyledonary sheath (the "dropper") with the plumule and radicle/root area at the bottom grows out of the seed and so carries both away from the seed, and establishment growth proceeds while the meristem in underground. However, the stem may thicken in other ways, as in some palms where ground tissues in both stem and root remains undifferentiated for some time, with limited mitosis and/or cell expansion and/or formation of schizogenous lacunae occurring and the trunk markedly thickening and lengthening - sustained primary growth (Waterhouse & Quinn 1978, see also Arecaceae).

There is some variation of lignin composition within monocots (see also Poales), and also in the rate of litter decomposition. Thus Cornwell et al. (2008) noted that "graminoid" (sedges and grasses) litter decomposed more slowly than that of forbs, and "monocot" lignin more slowly than that of other angiosperms, at about the same rate as that of gymnosperms. The rate of lignin composition is also affected by its nitrogen content, but more work on lignin decomposition is in order.

Scattered in monocots are taxa with broad leaf blades that have reticulate venation (see Cameron & Dickison 1998, also below) and also fleshy fruits (excluding things like arillate, ant-dispersed seeds), adaptations to shady conditions. Givnish et al. (2005, 2006b) suggested that reticulate venation has arisen at least 26 times in monocots (and fleshy fruits 21 times), and have sometimes subsequently been lost. Both features showed very strong signs of tending to be gained (or lost) together, a phenomenon described as "concerted convergence" (see also Dahlgren & Clifford 1982; Patterson & Givnish 2002). Fleshy fruits are estimated to have evolved ca 110 m.y.a., perhaps because the canopy had become closed, while elaiosomes, which originated 24 or more times, appeared later especially at the end of the Eocene when ants became common (Dunn et al. 2007). For more on berries in monocots, see Rasmussen et al. (2006).

Deng et al. (2015: p. 563) thought that CAM "may have evolved just after the diversification of monocots, with CAM appearing prior to C4", although they were not more precise; their focus was on Orchidaceae.

Seed Dispersal. The evolution of fleshy fruits and fruits with myrmecochorous seeds is examined by Dunn et al. (2007). The latter have evolved at least 24 times in monocots, probably no earlier than later Eocene when ants first become abundant in the amber record. Fleshy fruits, also very polyphyletic in origin, evolved much earlier, 110+ m.y.a., perhaps connected with closing of the canopy; overall, monocots show increased reliance on animals for seed dispersal over time (Dunn et al. 2007).

Plant-Animal Interactions. Overall, herbivory in monocots is relatively low (Turcotte et al. 2014: see caveats, Acoraceae not included, so this comment should really be placed at the next node up...). Caterpillars of Castniidae skipper butterflies eat a variety of monocots (Forbes 1956; see Powell et al. 1999 for some other groups that prefer monocots). Larvae of the chrysomelid beetle group Galerucinae subribe Diabroticites are quite common on monocots, where they feed on roots (Eben 1999), indeed, Hispinae-Cassidinae (6000 species), sister to Galerucinae (10,000 species) are the major group of monocot-eating beetles (Jolivet & Hawkeswood 1995; Wilf et al. 2000; Chaboo 2007). Wilf et al. (2000) thought that these beetles initially ate aquatic members of Acorales and Alismatales, the association of commelinids with the Hispinae-Cassidinae being derived. However, Gómez-Zurita et al. (2007) thought that the two main clades of monocot-eating chrysomelid beetles included in their study were unrelated, and neither was close to the galerucines, and also that the chrysomelids diversified 86-63 m.y.a., well after the origin of monocots. García-Robledo and Staines (2008) discuss problems when ascribing herbivory to particular groups when using fossil material.

The idea has been floated that monocots experience less herbivory in lowland tropical rainforests than do other angiosperms, in part because they are tough and in part because the leaves remain rolled up for a relatively long time (Grubb et al. 2008). Most monocots have raphides as their main crystalline form of calcium oxalate, and these may be involved in herbivore defence (e.g. see Araceae; Franceschi & Nakata 2005).

Bacterial/Fungal Associations. Monocots are practically never ectomycorrhizal, but myco-heterotrophy is disproportionally common here. This may be because there is no secondary thickening, a thick cortex, no primary root, etc. (Imhof 2010).

Vegetative Variation. The tunica-corpus construction in the stem apex of monocots is similar to that in other angiosperms, although a 1-layered tunica, as in maize, is somewhat more common (Stewart & Dermen 1979; Jouannic 2011 and references). The outer tunica layer can proliferate at the leaf margin as can be seen in some variegated leaves (Zonneveld 2007).

Monocots show great variation in their basic leaf construction (e.g. Kaplan 1973), and seedlings, e.g. of Restionaceae, may hsve all sorts of leaf morphologies (e.g. Linder & Caddick 2001). One commonly thinks of monocots as having broad, sheathing bases and elongated leaf blades with parallel venation that are about the same width, but this is perhaps because of the ubiquity of grasses (for the sheathing base of Zea, see Johnston et al. 2014a) and the fact that many commonly-cultivated bulbs have such leaves. The relation between the blade of a monocot leaf and that of a broad-leaved angiosperm is of the greatest interest. Leaves in general are often considered to be made up of a apical hyperphyll and basal hypophyll (e.g. ). In broad-leaved angiosperms the hyperphyll gives rise to the blade which has a marginal meristem (blastozone) and develops in an acropetal fashion - that is, the veins are first formed at the base of the blade. The hypophyll, on the other hand, gives rise to the petiole, a rather late-developing part of the leaf, leaf base, and stipules. In broad-leaved angiosperms like Arabidopsis development at the base of the blade, the junction of the hyperphyll and hypophyll, proceeds in two directions; cells are cut off both distally towards the apex and proximally towards the base (Ichihashi et al. 2011). In many monocots, most of the leaf is thought to be developed from the hypophyll alone and maturation of the blade proceeds basipetally as cell files are cut off from a transverse basal plate. Thus tissues in the apex of the blade of grass or palm leaf emerging from the sheath are mature while cells at the base are actively dividing and elongating. There is often a "Vorläuferspitze", a usually small abaxial unifacial conical or cylindrical protrusion at the apex of the mature leaf; this may represent the entire hyperphyll (e.g. Knoll 1948; Troll 1955; Bharathan 1996). In such leaves it is thought that the blade develops from the equivalent of the broad-leaved angiosperm leaf base. In leaves in general, localization of PIN-FORMED1 auxin transport proteins is associated with provascular strand development, whether at the marginal meristem or the sheathing leaf base (Johnston et al. 2014a).

However, in Acorus (Kaplan 1970a) and most, but not all, Alismatales studied (e.g. Bloedel & Hirsch 1979) a bifacial blade may develop from the upper part of the leaf primordium. Such leaves are quite similar in development to those of broad-leaved angiosperms (Doyle 2013). Quite commonly there is still a small Vorläuferspitze, but this is visible only in cataphylls and/or early developed leaves in Alismataceae (Bloedel & Hirsch 1979), and it is also visible in Cyclanthaceae (Wilder 1986). How much hyperphyll a Vorläuferspitze represents varies, and Bharathan (1996) noted that a Vorläuferspitze was to be found in some monocot leaves whose blade develops from the hyperphyll.

Many of the features that make up a "typical" monocot leaf seem to vary independently: Leaf base surrounding the stem/not; blade developed from the hypophyll/hyperphyll; Vorläuferspitze present/absent; venation parallel/reticulate; blade develops basipetally/acropetally; petiole and blade develop simultaneously/petiole tends to develop somewhat later (monocot states first: see e.g. Kaplan 1973; Bharathan 1996). Variation is especially great in Alismatales and Acorus, although relating this to monocot phylogeny is difficult. However, "typical" monocot leaves are unlikely to be an apomorphy of monocots (see also Doyle 2013). Geeta (2003) divided foliar features of angiosperms into eight separate characters, and in an analysis of these characters across 24 angiosperms did not quite recover a monophyletic monocot group; as she summarized her findings "it is concluded that there is no entity, the "monocot leaf primordium"" (ibid.: p. 609). Leaf development in monocots needs more comparative study.

Terete, unifacial blades with stomata all over the surface are scattered in monocots. These may result from the elaboration of the unifacial Vorläuferspitze (e.g. Arber 1925; Troll 1955; Troll & Meyer 1955; Kaplan 1973, 1975: comparison with Oxypolis, Acacia; Townsley & Sinha 2012). Monocots sometimes have laterally flattened and isobifacial leaves that are edge on to the stem, and they look like a bifacial dorsiventral blade that has folded and become connate adaxially, but Kaplan (1970a: Acorus) suggested that they were the adaxial elaboration of a midrib/costal region. Rudall and Buzgo (2002) suggest that this isobifacial leaf originates from an intermediate zone between hyperphyll and hypophyll. However, developmentally both these isobifacial and terete unifacial leaves represent the genetic abaxialization of the leaf, the genes normally expressed abaxially being the only genes expressed, at least at the leaf surface (Yamaguchi & Tsukaya 2010; Nakayama et al. 2013). Yamaguchi et al. (2010) show how in Juncus isobifacial leaves differed from terete leaves by the activity of the DL gene that elsewhere in monocots is involved in midrib development.

Gifford and Foster [1988: Fig. 19-13] prefer to think of parallel monocot venation as being striate, emphasizing how the main veins join sequentially at the apex, although the different kinds of leaf venation that they show are variations on a parallel theme. Members of Zingiberales typically have a well-developed midrib from which numerous closely parallel veins leave, either proceeding straight to the margin, as in Musa, or taking a more arcuate path. Some kind of midrib/central vein is common, or there may be a few strong veins diverging from the base (Doyle et al. 2008, which see for further details of the venation of monocot leaves, etc.; Coiffard & Mohr 2015). Transverse veins joining the parallel veins are ubiquitous in monocots, and those in the broadly cordate blades of Stemona (Pandanales-Stemonaceae) are particularly conspicuous and elegant. In a number of monocots there are broad leaf blades, petioles, the venation is reticulate and with some free vein endings, and the stomata are unoriented (see Cameron & Dickison 1998). Net venation may have arisen at least 26 times in monocots (see above: Givnish et al. 2005, 2006b: see above). The plants involved are often vines/lianes (Smilax [Liliales], Dioscorea [Dioscoreales]) and/or plants which live in shady habits for at least parts of their lives (Trillium [Liliales]). Given the parallel evolution of leaf blades and uncertainties as to how monocot blades develop, the leaf blades of Hosta (Asparagales) and Orontium (Alismatales) are similar only in a functional sense (Troll 1955).

Truly compound leaves are rare in monocots - Zamioculcas, Anthurium and a few species of Dioscorea are examples - but cell death may result in the leaves appearing to be compound (a few Araceae) or having distinctive perforations (some Araceae and Aponogetonaceae). In palms, a process related to abscission causes the leaf blade to become dissected and appear compound (Nowak et al. 2007, 2008) while in Zingiberales like Musa the blade easily gets torn by the wind and then appears compound..

Ligules are scattered throughout the monocots and are born either at the base (e.g. Potamogetonaceae) or top (e.g. Poaceae) of the petiole or sheath. A ligule may mark the point of separation of the two parts of the leaf, and Zamioculcas has a ligule very near the base of the petiole, suggesting that the rest of the leaf is equivalent to the hyperphyll, i.e. it is like the lamina of a broad leaved angiosperm - and if it is such a marker, then the same would be true for other monocots with ligules. Genes expressed in ligule development in maize are also expressed elsewhere (base of leaf, branch points) where they mark developmental boundaries (Zhu et al. 2013; Johnston et al. 2014b). Ligules may be paired. Indeed, as has been pointed out by authors like Roth (1949) and Rudall and Buzgo (2002), the developmental origins of monocot ligules and at least some stipules of BLAs are not fundamentally different, both arising from adaxial cross meristems, a sort of intercalary meristem, in the transition zone between hyperphyll and hypophyll (see also Ichihashi et al. 2011). There are also developmental similarities between stipules and leaf sheaths (the latter as in Poaceae), and abaxializing factors may interfere with their development (Townsley & Sinha 2012). Smilax has paired tendrils near the base of the petiole, but such paired structures, whether tendril or ligule, are practically never called stipules because monocots are supposed not to have stipules.... Although I have not used the term "stipule" in the monocot characterisations, some structures there have at least as good a title to the name as some of the things called stipules in BLAs - or perhaps all should be called ligules (see also Colomb 1887).

Genes & Genomes. For the evolution of the IR/LSC junction in monocot chloroplasts, see R.-J. Wang et al. (2008) and Mardanov et al. (2008).

Lee et al. (2011: c.f. sampling and topology) found that genes involved in cell fate commitment, auxin metabolism, etc., tended to cluster at this node of the tree.

Salse et al. (2009) suggested that the common ancestor of monocots had five protochromosomes. There is relatively little colinearity and synteny when monocots and rosids are compared, although these are extensive within each group (Tang et al. 2008). For a major genome duplication in monocots, see the [Asparagales + Commelinids] clade.

The story of the evolution of the GC profile of protein-coding genes in the genome is complex, and Clément et al. (2014) suggest that the ancestral condition for monocots as a whole, not just grasses, is for the GC profile to be bimodal (see also McKain et al. 2016 for literature).

Chemistry, Morphology, etc. Some monocots (Amaryllidaceae, Araceae) have benzylisoqinoline alkaloids, but it is unclear if they are produced by the same biosynthetic pathway as these alkaloids in broad-leaved angiosperms (Waterman 1999).

Cork cambium in the roots is superficial in origin, developing just beneath the exodermis (Arber 1925); I do not know how common it is, but at best it seems to be rare. For the primary thickening meristem in the stem, see e.g. Esau (1943), Rudall (1991a, a summary), de Menezes et al. (2005) and Pizzolato (2009); this is quite variable in details of its origin and the tissues to which it gives rise. Endodermal initials in at least some cases produce radially-arranged cortical cells centrifugally, while derivatives of the pericycle (itself the very outside of the phloic tissue - see Esau 1943), initially produce the vascular system centripetally (de Menezes et al. 2011; Cury et al. 2012). Indeed, de Menezes et al. (2011) suggested that there was no distinct primary thickening meristem in monocots, but some of the argument here seems to be more definitional than anything else.

Cambial tissue in the stem, which gives rise to monocot-type of secondary thickening, as in a number of Asparagales (see above: Rudall 1995b for a summary), may represent a continuation of the activity of the primary thickening meristem (Carlquist 2012a) or whatever this tissue is. Vascular bundles in a number of monocots may have a sort of cambial layer, but its products never amount to much (Arber 1919). The roots of Dracaena produce secondary bundles (Carlquist 2012a).

Cheadle (e.g. 1942, 1943a, 1943b, 1944) and Wagner (1977) surveyed vessel types in the vegetative parts of monocots; although there appear to be large-scale patterns, these data need to be re-evaluated. Cheadle (e.g. 1944) noted that there could be substantial variation in vessel morphology between closely related (congeneric) species, and even between different organs on the same plant (see also Carlquist 2009). Such variation was used to establish his evolutionary trends (Cheadle 1955, 1964, 1969a, b, 1970; Cheadle & Tucker 1961; Cheadle & Kosakai 1971). However, Carlquist (2012a) found criteria for recognising vessels as distinct from tracheids to be difficult to formulate and questioned a number of these earlier reports of vessels, which makes life a bit difficult. Tomlinson and Fisher (2000) noted a correlation in climbing monocots between the presence of simple perforation plates in metaxylem vessels and absence of direct protoxylem/metaxylem continuty and of the presence of scalariform perforation plates and direct protoxylem/metaxylem continuty. Amphivasal vascular bundles are common in monocot stems, although they are absent in some groups (e.g. Jeffrey 1917; Arber 1925). See Botha (2005) for distinctive thick-walled late-formed sieve tubes in some monocots.

Many monocots, although not the old Helobieae (here in Alismatales), have thin-walled bulliform cells in the adaxial epidermis and/or in other tissues that may cause the leaf to curl as they lose turgor (Löv 1926; c.f. Kellogg 2015). Paracytic (and tetracytic) stomata are common in monocots, and variations in how they develop may characterise major clades, although there is also much variation within them (see e.g. [Poales [Commelinales + Zingiberales]]: c.f. Tomlinson 1974a, q.v. for data, also Paliwal 1969; Pant & Kidwai 1965); more observations are still needed (Rudall 2000).

Monocot leaf teeth, when present, are more or less spinose, never glandular. Colleter-like structures ("intravaginal squamules") may be a synapomorphy of monocots or of independent origins in Acorales and other Alismatales, within Araceae, for instance, they seem to be known only from very much phylogenetically embedded genera such as Philodendron, Cryptocoryne and Lagenandra (M. Carlsen, pers. comm.; see also Wilder 1975).

Floral orientation in the monocots is quite variable, and in part depends on the presence and position of the prophyll/bracteole, and also on the existence of other structures on the pedicel (see e.g. Eichler 1875; Engler 1888; Remizova et al. 2006b). Stuetzel and Marx (2005) also note the variability in bracteole position, because, they think, what appear to be axillary flowers are reduced racemes. Be that as it may, when the prophyll/bracteole is lateral, the floral orientation can be quite variable (although less so with respect to the bracteole - Remizowa et al. 2013b). Monosymmetric flowers are very frequently presented with the median sepal adaxial, i.e., the flowers are inverted; in taxa with a labellum, the labellum is the median tepal of the inner whorl. This tepal may be a landing platform for the pollinator and is partly supported by the two adjacent tepals of the outermost perianth whorl when the flower is inverted; if the landing platform were a member of the outer whorl, there would not be the same support. In those Commelinaceae where the abaxial tepal is very small, the well developed inflorescence bract may serve the same purpose. Connected with this inverted monosymmetry is the suppression of at least the adaxial median stamen (Pattern I zygomorphy: Rudall & Bateman 2004); after inversion the flowers effectively have Pattern II zygomorphy, in which abaxial stamens are sterilized. Remarkably, although flowers on the one inflorescence of Crocosmia X crocosmiiflora (Iridaceae) were all monosymmetric, in some the odd member of the outer whorl was adaxial, and in others it was abaxial; patterning, etc. of the other floral organs was adjusted accordingly (pers. obs. vii.2009). For inflorescence morphology, see Remizowa et al. (2011a) and Remizowa and Lock (2012), for bracts in early divergent monocots, see Remizowa et al. (2013a), for floral evolution, see Vogel (1981a: now somewhat dated).

Monocots and "dicots" were often distinguished in the past by the 3-merous flowers of the former and the predominantly 5-merous flowers of the latter, even as it was realised that some of the "primitive dicots" might have more or less 3-merous flowers. With our current knowledge of phylogeny and floral development, it seems that a 3-merous perianth is quite widespread near the base of the angiosperm tree and may even be a synapomorphy for a clade [[Chloranthaceae + magnoliids] [monocots [Ceratophyllaceae + eudicots]]] (Soltis et al. 2005b and literature cited). The two perianth whorls in monocots are similar and so are called tepals, however, there is usually a slight difference between the members of the two whorls. The stamens are individually opposite members of each whorl, stamen-tepal primordia being common; the individual perianth whorls do not completely encircle the floral apex (look at the base of a tulip, lily, or iris flower, for example). As a result, the tepals of each whorl, particularly the outer, may have open aestivation, although in Smilax, for example, the outer tepal members seem to completely surround the apex and are valvate. Such trimerous monocot flowers are rather highly stereotyped and usually pentacyclic; functionally, they are often six-merous. They are at best extremely uncommon in broad-leaved angiosperms and are here considered to be an apomorphy for monocots (c.f. Soltis et al. 2005b; Bateman et al. 2006b). In some Alismatales, the outer whorl of stamens may come to lie outside the inner perianth whorl, as in Juncaginaceae (see e.g. Dahlgren et al. 1985; Endress 1995b; Remizowa et al. 2010b and references).

There is some variation in the vasculature even of the stereotypical monocot flower, as Gatin (1920) described in her extensive survey of the flowers of Old Style Liliaceae. She found that a number of genera had only a single vascular bundle entering each tepal member; sometimes successively-dividing traces supplied different parts of the flowers, or each floral part was supplied by a separate trace, the gynoecium was variously vascularized, and so on. T-A primordia may develop quite quickly while the appearance of G primordia is delayed (Endress 1995b).

In commelinids the two perianth whorls are quite often differentiated into a clearly smaller, more or less green outer "calyx", and a larger, coloured inner "corolla". These whorls individually surround the floral apex and the androecium is inside the inner whorl.

Gene expression in floral development varies somewhat from that in core eudicots like Arabidopsis. Thus B-class genes, usually expressed in petals in core eudicots, are also expressed in the outer petal-like tepal whorl of Tulipa (Kanno et al. 2003) and Dendrobium (Y. zu et al. 2006) (Tzeng & Yang 2001). Furthermore, even if expressed in both outer whorls, whether or not the B-function genes form obligate heterodimers varied (Zu et al. 2006). Moreover, Ochiai et al. (2004) found that DEF, a B-class gene, was not expressed in the sepals of two Commelinaceae they examined, and also not in the outer more or less petal-like tepal whorls of Asparagus or Lilium (Park et al. 2003, 2004; Tzeng & Yang 2001), while Almeida et al. (2013) found that in Canna ABC-type floral genes had very broad expression patterns across the various floral organs.

It is unclear how the anther wall develops in Acorus (Rudall & Furness 1997), although it inclines to the monocot "type" (Duvall 2001). Given the diversity of carpel development in monocots in, or near the base of, the basal pectinations in the monocot tree, whether or not the basic condition for monocot carpels is to be free or somewhat connate is unclear (e.g. Chen et al. 2004; Remizowa et al 2006a). Remizowa et al. (2006b) summarize variation in gynoecial morphology in some of these monocots.

There has been much discussion about the evolution of the single cotyledon that characterizes the clade - by connation, or by suppression (see e.g. Haines & Lye 1979; Burger 1998)? Having a terminal cotyledon was initially thought to be a synapomorphy of the monocots, and Kaplan (1997: 1 ch. 4) noted that this is because the single cotyledon pushes the erstwhile terminal meristem to one side, so evicting it, similarly, the cotyledon of broad-leaved angiosperms that have only a single cotyledon is more or less terminal. Conversely, in Poaceae the whole embryo is well developed, primordia of foliage leaves being visible, so it is perhaps not surprising to find that the cotyledon is more obviously lateral there. The relationship of the radicle to the suspensor seems to vary, and its point of origin is distinctly to one side in several Alismatales, at least (Yamashita 1976).

For monocots, in addition to references in the notes on the Characters page and under individual orders and families, there is much interesting information in Arber (1920, esp. 1925), Dahlgren et al. (1985) and Tillich (1998); Tomlinson (1970) outlined monocot morphology and anatomy, emphasizing the woody groups; Volumes III and IV of Families and Genera of Vascular Plants, edited and with useful outline classifications by Kubitzki (see especially 1998a, c), also contain a great deal of information. For the morphology of sieve tube plastids, see Behnke (1981a, 2000, 2001, esp. 2003), for dimorphism of the cells of the root epidermis and hypodermis, see Kauff et al. (2000), for rhizosheaths, known from Poaceae and other Poales, rare in broad-leaved angiosperms?), see McCulley (1995), for androecial variation, see Ronse Decraene and Smets (1995a), for endosperm development see above, also Floyd and Friedman (2000), etc., for incompatibility systems in monocots - quite common, many uncharacterized, but at least some gametophytic - see Sage et al. (2000), for the distribution of operculate pollen, see Furness and Rudall (2006b), for pollen variation in "basal" monocots, see Furness and Banks (2010), for the development of callose plugs in the pollen tube - quite often complete and regularly spaced in broad-leaved angiosperms, incomplete and irregularly spaced in monocots, see Mogami et al. (2006), for gynoecial morphology and evolution, see Remizowa et al. (2010b), for a summary of embryology, see Danilova et al. (1990a) and Rudall (1997), for antipodal cells, see Holloway and Friedman (2008), for nuclear DNA content, see Bharathan et al. (1994), for seed and fruit morphology and anatomy, Takhtajan et al. (1985), for fleshy fruits, see Thadeo et al. (2015), for the evolution of seeds, see Danilova et al. (1990b: now somewhat dated), for seed size, see e.g. Moles et al. (2005a), and for seedling morphology, see Takhtajan et al. (1985: compilation), Kaplan (1997: 1 ch. 5) and Tillich (2007).

Phylogeny. For the immediate relatives of monocots, see the discussion at the mesangiosperm node. Chloranthales, magnoliids, and Ceratophyllales are the other clades close to the eudicots that may all or part form the clade sister to monocots.

Both molecular and much morphological data strongly support monocot monophyly. General relationships within monocots as outlined in molecular studies by Chase et al. (1995a, 1995b, 2000a, 2005), Tamura et al. (2004a, b), Chase (2004), Janssen and Bremer (2004: rbcL only, but 878 genera from 77 families), Graham et al. (2006: to 16 kb chloroplast DNA/taxon examined), Givnish et al. (2006b), Chase et al. (2006), Li and Zhou (2007), Soltis et al. (2011), Barrett et al. (2012b: 83 chloroplast genes, focus on commelinids), Iles et al. (2013) and Ruhfel et al. (2014: chloroplast genomes) are followed here; further comments may be found at various nodes within the monocot tree. Davis et al. (2013) tabulate support for various clades afforded by individual chloroplast genes.

In most studies Acorus is sister to all other monocots (e.g. Duvall et al. 1993a, b; Soltis et al. 2007a; Moore et al. 2010; Morton 2011; Hertweck et al. 2015; Ross et al. 2015; Luo et al. 2015). However, Stevenson et al. (2000) suggested a rather different set of relationships - [Acoraceae + most of Alismatales] [Araceae + all other monocots]]. Davis et al. (2001) found that a clade [Acoraceae + Alismatales (as delimited here)] was sister to other monocots, and this position was found in the morphological analysis of Doyle and Endress (2000). Davis et al. (2004) noted that this latter set of relationships was not found when rbcL sequences were analysed alone, but it appeared when mitochondrial atpA sequences were analysed, both alone and in combined analyses (see Davis et al. 2006: four genes, two nuclear and two chloroplast, matK also supports this relationship). Petersen et al. (2015: 2 chloroplast and 5 mitochondrial [atp1 very influential] genes, morphological data) found the relationships [Tofieldiaceae [Araceae [Acoraceae [Alismataceae ...]]]], although support for this position was not strong. Thadeo et al. (2015: characters from morphology and all three genomic compartments) obtained similar relationships. Finet et al. (2010) found that Acorus and Asparagales formed a clade sister to all other monocots, but this is probably a sampling problem; no Alismatales were included in the analyses. Mitochondrial genes showed a much higher rate of change in Acoraceae and many Alismatales, but not Tofieldiaceae and Araceae; Acoraceae linked with the fast-evolving group (G. Petersen 2006c). Some characters of floral development are also consistent with an Acoraceae-Alismatales relationship (e.g. see Buzgo 2001). Interestingly, there is a three-nucleotide deletion in the atpA gene in Acoraceae and Alismatales, although not in Cymodoceaceae or Tofieldiaceae in the latter (Davis et al. 2004).

Indeed, G. Petersen et al. (2006b) found trees based on analyses of mitochondrial data in general to be rather incongruent with those based on plastid data, for instance, Orchidaceae grouped with Dioscoreaceae and Thismia, and the positions of Liliales, Asparagales and Dasypogonaceae in particular were very labile. Although G. Petersen et al. (2006b) suggested that the incongruences "could equally well refute the phylogenies based on plastid data" (Petersen et al. 2006b: p. 59), this seems unlikely to happen; problems caused by how the mitochondrial genome - and the atp

1 gene seems especially problematical - evolves seem more plausible (see Petersen et al. 2015 for detailed discussion and literature: focus on Acoraceae).

Qiu et al. (2010) found Asparagales to be sister to all monocots other than Alismatales, although support for this position was not very strong and Petrosaviales were not included. Analyses using complete chloroplast genomes sometimes yielded the clade [Liliales [Pandanales + Dioscoreales]], especially when fewer genes were included in the analyses (Liu et al. 2012; see also Ruhfel et al. 2014: chloroplast genomes, only one species of each included), indeed, a variety of relationships were found in the various analyses carried out by Liu et al. (2012), including Alismatales embedded in the commelinids. For other suggestions of relationships in this area, see Fiz-Palacios et al. (2011).

Note that monocots were not monophyletic in some morphological studies such as those by Hay and Mabberley (1991); Araceae were independently derived from broad-leaved angiosperms, perhaps from Nymphaeales. Some morphological cladistic studies have placed net-veined monocots as sister to all other monocots, suggesting that this leaf venation was plesiomorphic in the monocots (Stevenson & Loconte 1995, see also Dahlgren et al. 1985; Yeo 1989; Li & Zhou 2006, etc.); the broad-leaved angiosperm outgroups have similar foliar features. This harks back to some ideas of Lindley (1853), who thought that the monocots that had leaves with reticulate venation, which he called dictyogens, were intermediate between the exogens (dicots) and the endogens (other monocots). Morphological cladistic analyses of the net-veined taxa by themselves (Conran 1989) also suggested relationships which now seem rather unsatisfactory. The analysis of morphological characters alone in monocots has tended to produce trees with little resolution and little support for those branches that are resolved (e.g. Li & Zhou 2006: support only for Alismatales minus Aracaeae and for Zingiberales). Focussing on the single character of apocarpous gynoecium, Endress (1995b) suggested that Triuris (Pandanales-Triuridaceae) might be a rather basal monocot. Even in an analysis of fifteen chloroplast genomes, the five monocots included were not always monophyletic (Goremykin et al. 2005), while Duvall et al. (2006) discuss other studies in which monocots appear not to be monophyletic - the 18S gene is implicated in producing this topology. In the PHYC analysis of Hertweck et al. (2015) Acorales were sister (99% ML bootstrap!) to eudicots.

For further discussion of relationships in the monocots, see especially the Petrosaviales and Arecales pages.

Classification. For a linear sequence of monocot genera, excluding Orchidaceae and Poaceae, see Trias-Blasi et al. (2015).

Thanks. I am grateful to Claudia Henriquez for much discussion on leaf development in monocots.

Synonymy: Acoranae Reveal, Alismatanae Takhtajan, Aranae Reveal, Arecanae Takhtajan, Bromelianae Reveal, Butomanae Reveal, Commelinanae Takhtajan, Cyclanthanae Reveal, Dioscoreanae Reveal & Doweld, Iridanae Doweld, JuncanaeMelanthianae Doweld, Myrtanae Takhtajan, Najadanae Reveal, Orchidanae Doweld, Pandananae Reveal, Petrosavianae Doweld, Poanae Doweld & Reveal, Pontederianae Reveal, Rapateanae Doweld, Triuridanae Reveal, Typhanae Reveal, Zingiberanae Reveal, Zosteranae Doweld - Alismatidae Takhtajan, Arecidae Takhtajan, Aridae Takhtajan, Bromeliidae C. Y. Wu, Burmanniidae Heintze, Commelinidae Takhtajan, Juncidae Doweld, Liliidae J. H. Schnaffner, Orchididae Heintze, Triuridae Reveal, Zingiberidae Cronquist - Aropsida Bartling, Bromeliopsida Brongniart, Crinopsida Horaninov, Hydrocharitopsida Bartling, Juncopsida Bartling, Liliopsida Batsch, Liriopsida Brongniart, Najadiopsida Hoffmannsegg & Link, Orchidopsida Bartling, Pandanopsida Brongniart, Phoenicopsida Brongniart

ACORALES Martius, see Main Tree.

Vessels 0; inflorescence scapose, a spadix with large associated inflorescence bract [spathe]; flowers dense, sessile, small [<5 mm across], weakly monosymmetric [abaxial member of outer T whorl precocious and larger]; tapetal cells 2-4-nucleate; tectum continuous; carpels ascidiate-plicate, syncarpy congenital; ovules straight; endosperm copious, perisperm +, derived from nucellar epidermis, not starchy; collar rhizoids +. - 1 family, 1 genus, 2-4 species.

Note: Boldface denotes possible apomorphies, (....) denotes a feature common in the clade, exact status uncertain, [....] includes explanatory material. Note that the particular node to which many characters, particularly the more cryptic ones, should be assigned is unclear. This is partly because homoplasy is very common, in addition, basic information for all too many characters is very incomplete, frequently coming from taxa well embedded in the clade of interest and so making the position of any putative apomorphy uncertain. Then there are the not-so-trivial issues of how character states are delimited and ancestral states are reconstructed (see above).

Evolution. Divergence & Distribution. Diversification rates in this clade are distinctly low (Hertweck et al. 2015; Tank et al. 2015) as are rates of molecular evolution of the plastome (Barrett et al. 2015b).

Includes Acoraceae.

ACORACEAE Martinov   Back to Acorales


Stem with endodermis; leaves two-ranked, isobifacial [oriented edge on to the stem, bases equitant], intravaginal squamules + [?= colleters]; peduncle with two separate vascular systems; bracts 0, bracteoles 0; floral vasculature forms a basal complex; T ± hooded; anthers introrse [?level], thecae confluent apically on dehiscence, endothecial thickenings stellate; tapetum secretory, cells 2-4-nucleate; pollen sulcus lacking ectexine, endexine lamellate; dorsal carpellary bundle 0, ovary loculi with secretory trichomes, placentae apical, pendulous, style broad, massive, stylar canal with exudate; ovules several/carpel, outer integument 3-5 cells across, integuments with hairs, hypostase massive, with central column and radiating cells, postament +; antipodal cells ± persistent, (dividing); fruit a berry; tegmen cells thickened?; P persistent; plastid accD gene lost; n = 9, 11, 12; first leaf terete, unifacial.

1[list]/2-4. Northern Hemisphere (map: from Hultén 1962; Fl. N. Am. 22: 2000), but perhaps naturalised in Europe and America (Mayo et al. 1997). [Photo - Habit.]

Age. Crown-group Acoraceae were dated to 19 ± 5.7 m.y. by Merckx et al. (2008a), 52-4 m.y. by Mennes et al. (2013, see also 2015) and (50-)30(-15) or (10-)9 m.y. by Hertweck et al. (2015).

Evolution. Divergence & Distribution. See Stockey (2006) for an evaluation of fossil remains of Acoraceae.

Genes & Genomes. There has been a great increase in the rate of synonymous substitutions in the mitochondrial genome, but not in that of the chloroplast genome (Mower et al. 2007; see also G. Petersen et al. 2006b).

Chemistry, Morphology, etc. The root stele is pentarch. Does Acorus have vessels? It seems to depend on one's definition, and Carlquist (2012a, see also 2009) calls the plant functionally vesselless, the tracheids being "pre-vessel" in morphology - although derived.

The abaxial tepal is large, bract-like, and encloses the young flower, indeed, it seems to have "merged" with the bract (Buzgo 2001), being depicted as an organ of "hybrid" nature (Bateman et al. 2006b); Ronse de Craene (2010) interprets it as a bract, one tepal being missing (if this is the correct interpretation, some apomorphies above will have to be changed). For possible septal nectaries, see above. The ovules are encased in mucilage secreted by the intra-ovarian trichomes.

Additional information is taken from Grayum (1987), Bogner and Mayo (1998), and Bogner (2011), all general, Kaplan (1970a: leaf development), Carlquist and Schneider (1997) and Keating (2003a), both anatomy, Soukup et al. (2005: root development, intermediate), Buzgo and Endress (2000: floral morphology), Eyde et al. (1967: floral anatomy), Buell (1938: ovule), Floyd and Friedman (2000: endosperm with uniseriate cells in micropylar chamber, etc.), and Tillich (1985: seedling). For a checklist and bibliography, see Govaerts and Frodin (2002) and World Checklist of Monocots.