EMBRYOPSIDA Pirani & Prado

Gametophyte dominant, independent, multicellular, thalloid, with single-celled apical meristem, showing gravitropism; rhizoids +, unicellular; flavonoids + [absorbtion of UV radiation]; chloroplasts lacking pyrenoids; protoplasm dessication tolerant [plant poikilohydric]; cuticle +; cell walls with (1->4)-ß-D-glucans [xyloglucans], lignin +; several chloroplasts per cell; glycolate metabolism in leaf peroxisomes [glyoxysomes]; centrioles in vegetative cells 0, metaphase spindle anastral, predictive preprophase band of microtubules, phragmoplast + [cell wall deposition spreading from around the spindle fibres], plasmodesmata +; antheridia and archegonia jacketed, stalked; spermatogenous cells monoplastidic, centrioles develop de novo, associated with basal bodies of flagellae, multilayered structure +, proximal end of basal bodies lacking symmetry, stellate pattern associated with doublet tubules of transition zone; spermatozoids with a left-handed coil; male gametes with 2 lateral flagellae; oogamy; sporophyte dependent on gametophyte, embryo initially surrounded by haploid gametophytic tissue, plane of first division horizontal [with respect to long axis of archegonium/embryo sac], suspensor/foot +, cell walls with nacreous thickenings; sporophyte multicellular, with at least transient apical cell [?level], sporangium +, single, dehiscence longitudinal; meiosis sporic, monoplastidic, microtubule organizing centre associated with plastid, cytokinesis simultaneous, preceding nuclear division, sporocytes 4-lobed, with a quadripolar microtubule system; spores in tetrads, sporopollenin in the spore wall, wall with several trilamellar layers [white-line centred layers, i.e. walls multilamellate]; close association between the trnLUAA and trnFGAA genes on the chloroplast genome.

Many of the bolded characters in the characterization above are apomorphies of subsets of streptophytes along the lineage leading to the embryophytes, not apomorphies of crown-group embryophytes per se.

All groups below are crown groups, nearly all are extant; characters mentioned are those of the common ancestor of the group.

STOMATOPHYTES

Abscisic acid, ?D-methionine +; sporangium with seta, seta developing from basal meristem [between epibasal and hypobasal cells], sporangial columella + [developing from endothecial cells]; stomata +, anomocytic, cell lineage that produces them with symmetric divisions [perigenous]; underlying similarities in the development of conducting tissue and in rhizoids/root hairs; spores trilete; polar transport of auxins and class 1 KNOX genes expressed in the sporangium alone; MIKC, MI*K*C* and class 1 and 2 KNOX genes, post-transcriptional editing of chloroplast genes; gain of three group II mitochondrial introns.

[Anthocerophyta + Polysporangiophyta]: archegonia embedded/sunken in the gametophyte; sporophyte long-lived, chlorophyllous; sporophyte-gametophyte junction interdigitate, sporophyte cells showing rhizoid-like behaviour.

POLYSPORANGIOPHYTA†

Sporophyte branched, branching apical, dichotomous; sporangia several; spore walls not multilamellate [?here].

EXTANT TRACHEOPHYTA / VASCULAR PLANTS

Photosynthetic red light response; water content of protoplasm relatively stable [plant homoiohydric]; control of leaf hydration passive; (condensed or nonhydrolyzable tannins/proanthocyanidins +); sporophyte soon independent, dominant, with basipetal polar auxin transport; vascular tissue +, sieve cells + [nucleus degenerating], tracheids +, in both protoxylem and metaxylem; endodermis +; root xylem exarch [development centripetal]; stem with an apical cell; branching dichotomous; leaves spirally arranged, blades with mean venation density 1.8 mm/mm2 [to 5 mm/mm2]; sporangia adaxial on the sporophyll, derived from periclinal divisions of several epidermal cells, wall multilayered [eusporangium]; columella 0; tapetum glandular; gametophytes exosporic, green, photosynthetic; stellate pattern split between doublet and triplet regions of transition zone; placenta with single layer of transfer cells in both sporophytic and gametophytic generations, embryonic axis not straight [root lateral with respect to the longitudinal axis; plant homorhizic].

[MONILOPHYTA + LIGNOPHYTA]

Branching ± indeterminate; lateral roots +, endogenous, root apex multicellular, root cap +; tracheids with scalariform-bordered pits; leaves with apical/marginal growth, venation development basipetal, growth determinate; sporangia borne in pairs and grouped in terminal trusses, dehiscence longitudinal, a single slit; cells polyplastidic, microtubule organizing centres not associated with plastids, diffuse, perinuclear; male gametes multiflagellate, basal bodies staggered, blepharoplasts paired; chloroplast long single copy ca 30kb inversion [from psbM to ycf2].

LIGNOPHYTA†

Plant woody; lateral root origin from the pericycle; branching lateral, meristems axillary; cork cambium + [producing cork abaxially], vascular cambium bifacial [producing phloem abaxially and xylem adaxially].

EXTANT SEED PLANTS / SPERMATOPHYTA

Plant evergreen; nicotinic acid metabolised to trigonelline, (cyanogenesis via tyrosine pathway); primary cell walls rich in xyloglucans and/or glucomannans, 25-30% pectin [Type I walls]; lignins derived from (some) sinapyl and particularly coniferyl alcohols [hence with p-hydroxyphenyl and guaiacyl lignin units, so no Maüle reaction]; root stele with xylem and phloem originating on alternate radii, not medullated [no pith], cork cambium deep seated; arbuscular mycorrhizae +; shoot apical meristem interface specific plasmodesmatal network; stem with vascular cylinder around central pith [eustele], phloem abaxial [ectophloic], endodermis 0, xylem endarch [development centrifugal]; wood homoxylous, tracheids and rays alone, tracheid/tracheid pits circular, bordered; mature sieve tube/cell lacking functioning nucleus, sieve tube plastids with starch grains; phloem fibres +; cork cambium superficial; leaves with single trace from vascular sympodium [nodes 1:1]; stomatal pore with active opening in response to leaf hydration, control by abscisic acid, metabolic regulation of water use efficiency, etc.; buds axillary (not associated with all leaves), exogenous; prophylls two, lateral; leaves with petiole and lamina, development basipetal, blade simple; plant heterosporous, sporangia borne on sporophylls; microsporophylls aggregated in indeterminate cones/strobili; grains monosulcate, aperture in ana- position [distal], exine and intine homogeneous; ovules unitegmic, parietal tissue 2+ cells across, megaspore tetrad linear, functional megaspore single, chalazal, lacking sporopollenin, megasporangium indehiscent; pollen grains land on ovule; gametophytes dependent on sporophyte; male gametophyte development initially endosporic, tube developing from distal end of grain, gametes two, developing after pollination, with cell walls; female gametophyte endosporic, initially syncytial, walls then surrounding individual nuclei; seeds "large" [ca 8 mm3], but not much bigger than ovule, with morphological dormancy; embryo cellular ab initio, endoscopic, plane of first cleavage of zygote transverse, suspensor +, short-minute, embryonic axis straight [shoot and root at opposite ends; plant allorhizic], white, cotyledons 2; plastid transmission maternal; ycf2 gene in inverted repeat, whole nuclear genome duplication [zeta duplication], two copies of LEAFY gene, PHY gene duplications [three - [BP [A/N + C/O]] - copies], nrDNA with 5.8S and 5S rDNA in separate clusters; mitochondrial nad1 intron 2 and coxIIi3 intron and trans-spliced introns present.

ANGIOSPERMAE / MAGNOLIOPHYTA

Lignans, O-methyl flavonols, dihydroflavonols, triterpenoid oleanane, apigenin and/or luteolin scattered, [cyanogenesis in ANITA grade?], S [syringyl] lignin units common [positive Maüle reaction - syringyl:guaiacyl ratio more than 2-2.5:1], and hemicelluloses as xyloglucans; root apical meristem intermediate-open; root vascular tissue oligarch [di- to pentarch], lateral roots arise opposite or immediately to the side of [when diarch] xylem poles; origin of epidermis with no clear pattern [probably from inner layer of root cap], trichoblasts [differentiated root hair-forming cells] 0, exodermis +; shoot apex with tunica-corpus construction, tunica 2-layered; reaction wood ?, associated gelatinous fibres [g-fibres] with innermost layer of secondary cell wall rich in cellulose and poor in lignin; starch grains simple; primary cell wall mostly with pectic polysaccharides, poor in mannans; tracheid:tracheid [end wall] plates with scalariform pitting, wood parenchyma +; sieve tubes enucleate, sieve plate with pores (0.1-)0.5-10< µm across, cytoplasm with P-proteins, cytoplasm not occluding pores of sieve plate, companion cell and sieve tube from same mother cell; sugar transport in phloem passive; nodes 1:?; stomata brachyparacytic [ends of subsidiary cells level with ends of pore], outer stomatal ledges producing vestibule, reduction in stomatal conductance to increasing CO2 concentration; lamina formed from the primordial leaf apex, margins toothed, development of venation acropetal, overall growth ± diffuse, venation hierarchical-reticulate, secondary veins pinnate, veins (1.7-)4.1(-5.7) mm/mm2, endings free; most/all leaves with axillary buds; flowers perfect, pedicellate, ± haplomorphic, parts spiral [esp. the A], free, numbers unstable, development in general centripetal; P +, members each with a single trace, outer members not sharply differentiated from the others, not enclosing the floral bud; A many, filament not sharply distinguished from anther, stout, broad, with a single trace, anther introrse, tetrasporangiate, sporangia in two groups of two [dithecal], ± embedded in the filament, with at least outer secondary parietal cells dividing, each theca dehiscing longitudinally, endothecium +, endothecial cells elongated at right angles to long axis of anther; (tapetum glandular), cells binucleate; microspore mother cells in a block, microsporogenesis successive, walls developing by centripetal furrowing; pollen subspherical, tectum continuous or microperforate, ektexine columellate, endexine +, thin, compact, lamellate only in the apertural regions; nectary 0; carpels present, superior, free, several, ascidiate, with postgenital occlusion by secretion, stylulus short, hollow, cavity not lined by distinct epidermal layer, stigma ± decurrent, carinal, dry [not secretory]; ovules few [?1]/carpel, marginal, anatropous, bitegmic, micropyle endostomal, outer integument 2-3 cells across, often largely subdermal in origin, inner integument 2-3 cells across, often dermal in origin, parietal tissue 1-3 cells across [crassinucellate], nucellar cap?; megasporocyte single, hypodermal, functional megaspore, chalazal, lacking cuticle; female gametophyte four-celled [one module, nucleus of egg cell sister to one of the polar nuclei]; supra-stylar extra-gynoecial compitum +; ovule not increasing in size between pollination and fertilization; pollen grains land on stigma, bicellular at dispersal, mature male gametophyte tricellular, germinating in less than 3 hours, pollination siphonogamous, tube elongated, growing between cells, growth rate (20-)80-20,000 µm/hour, apex of pectins, wall with callose, lumen with callose plugs, penetration of ovules via micropyle [porogamous], whole process takes ca 18 hours, distance to first ovule 1.1-2.1 mm; male gametes lacking cell walls, flagellae 0, double fertilization +, ovules aborting unless fertilized; P deciduous in fruit; seed exotestal, much larger than ovule at time of fertilization; endosperm diploid, cellular, heteropolar [micropylar and chalazal domains develop differently, first division oblique, micropylar end initially with a single large cell, divisions uniseriate, chalazal cell smaller, divisions in several planes], copious, oily and/or proteinaceous; dark reversal Pfr → Pr; Arabidopsis-type telomeres [(TTTAGGG)n]; 2C genome size 1-8.2 pg [1 pg = 109 base pairs], whole nuclear genome duplication [epsilon duplication]; protoplasm dessication tolerant [plant poikilohydric]; ndhB gene 21 codons enlarged at the 5' end, single copy of LEAFY and RPB2 gene, knox genes extensively duplicated [A1-A4], AP1/FUL gene, paleo AP3 and PI genes [paralogous B-class genes] +, with "DEAER" motif, SEP3/LOFSEP and three copies of the PHY gene, [PHYB [PHYA + PHYC]].

[NYMPHAEALES [AUSTROBAILEYALES [[CHLORANTHALES + MAGNOLIIDS] [MONOCOTS [CERATOPHYLLALES + EUDICOTS]]]]]: wood fibres +; axial parenchyma diffuse or diffuse-in-aggregates; pollen monosulcate [anasulcate], tectum reticulate-perforate [here?]; ?genome duplication; "DEAER" motif in AP3 and PI genes lost, gaps in these genes.

[AUSTROBAILEYALES [[CHLORANTHALES + MAGNOLIIDS] [MONOCOTS [CERATOPHYLLALES + EUDICOTS]]]]: vessel elements with scalariform perforation plates in primary xylem; essential oils in specialized cells [lamina and P ± pellucid-punctate]; tension wood +; tectum reticulate; anther wall with outer secondary parietal cell layer dividing; carpels plicate; nucellar cap + [character lost where in eudicots?]; 12BP [4 amino acids] deletion in P1 gene.

[[CHLORANTHALES + MAGNOLIIDS] [MONOCOTS [CERATOPHYLLALES + EUDICOTS]]] / MESANGIOSPERMAE: benzylisoquinoline alkaloids +; sesquiterpene synthase subfamily a [TPS-a] [?level], polyacetate derived anthraquinones + [?level]; outer epidermal walls of root elongation zone with cellulose fibrils oriented transverse to root axis; P more or less whorled, 3-merous [possible position]; pollen tube growth intra-gynoecial; embryo sac bipolar, 8 nucleate, antipodal cells persisting; endosperm triploid.  Back to Main Tree

(1->3),(1->4)-ß-D-glucans

Age. Clarke et al. (2011: see other estimates) suggested an age of (179-)152(-133) m.y. for this clade, N. Zhang et al. (2012) an age of (163-)145(-133) m.y., Xue et al. (2012) an age of ca 146.4 m.y., Naumann et al. (2013) an age of about 148.5 m.y., and Magallón et al. (2013) an age of around (180.7-)158.7-151.6(-137.7) m.y.. Some other estimates are older, ranging from (200-)174(-153) m.y. (with eudicot calibration) to (210-)184(-160) m.y. (without: Smith et al. 2010). Looking at the pattern of duplication of SEPALLATA genes, Yockteng et al. (2013) dated this node to around 187-137.4 m.y. ago, and (216, 197-)191, 154(-141) and ca 217 m.y. are the somewhat older spread of ages on Zheng et al. (2014) and Z. Wu et al. (2014).

The age of this branching point is estimated at (190-)167(-47) m.y. (95% HPD, Smith et al. 2010, Table S3), while a fossil-based estimate is ca 100 m.y. (Crepet et al. 2004). [Check]

Bell et al. (2010: Chloranthaceae sister to [Magnoliidae + everything else], but not monocots) suggested ages for this node of (152-)140(-128) or (135-)127(-119) m.y. depending on the method used.

Evolution. Divergence & Distribution. For the distribution of isoquinoline alkaloids, alternatively known as 1-benzyltetrahydroisoquinoline alkaloids, 1-btiq alkaloids, see Waterman (1999, 2007). How to optimise them on the tree is unclear. They are known from Chloranthaceae, the magnoliids, and eudicots, so if there is a clade [[Chloranthaceae + magnoliids] [monocots [Ceratophyllaceae + eudicots]]], as is recognized above, or some variation of this, they may be best optimised here. Zeng et al. (2014) optimised the distribution of a large number of characters on their tree and dated the nodes.

Ecology & Physiology. Foliar primary xylem with simple perforation plates in both protoxylem and metaxylem has evolved several times within this clade (Feild & Brodribb 2013); ceteris paribus, such vessels conduct water well. This then allowed the miniaturization of the foliar vein reticulum through the development of veins that are narrow yet still conduct water adequately, in turn allowing dense leaf venation and all that this entails in terms of high rates of photosynthesis and evaporation, etc.; see also .

Chemistry, Morphology, etc. The betalains of core Caryophyllales have biosynthetic similarities with benzylisoquinoline alkaloids. For the sesquiterpene synthase subfamily a, see the Amborella Genome Project (2013); not in Amborellaceae. For the orientation of cellulose fibrils in the outer epidermal walls of root elongation zone, see Kerstens and Verbelen (2002); I do not know what happens in the ANITA grade and in gymnosperms, and magnoliids and eudicots are very poorly sampled. This is perhaps the best place to put triploid endosperm on the tree; the other would be as a synapomorphy for all angiosperms, but in that case it would subsequently be lost twice, or lost once and then regained.

I largely follow Ronse De Craene et al. (2003) on the insertion of floral organs. To add where?: A whorled, carpel fusion by congenital occlusion.

Phylogeny. Immediately above the basal pectinations in the main tree, the ANITA grade (Amborellales, Nymphaeales and Austrobaileyales), relationships between the major clades have been for some time unclear (see also Zeng et al. 2014; Wickett et al. 2014 for a summary). Pending further studies, the topology [[Chloranthales + magnoliids] [monocots [Ceratophyllales + eudicots]]] is used here, rather different from the relationships suggested in the first six editions of this site and also from the tree in A.P.G. II (2003). However, relationships in this area are by no means certain, and a variety of other topologies have been obtained. Thus Soltis et al. (2005b) very reasonably summarized their discussion on relationhips in this area by showing a pentatomy of Ceratophyllaceae, Chloranthaceae, eudicots, magnoliids and monocots (see also P. Soltis et al. 1999). For further details of the clades involved, see eudicots, magnoliids, Ceratophyllales, Chloranthales and monocots.

The ANITA grade is considered fixed from the point of view of these discussions, and also the monophyly of the magnoliids, monocots and core eudicots. However, in Goremykin et al. (2005) the monocots did not always form a monophyletic group, a rather unlikely result that has been obtained in some studies where the nuclear gene 18S has been included (Troitsky et al. 1991: see Duvall et al. 2006 for references). The questions are, what are the relationships of these latter three clades, and where in particular are Chloranthales and Ceratophyllum to be placed? These two sets of questions are linked, for example, Graham et al. (2005) had found that the inclusion of Ceratophyllum and Chloranthaceae could destabilise relationships among other early branching clades, e.g., the position of the monocots became labile. Over the years, the positions of Ceratophyllaceae and Chloranthaceae have been particularly uncertain, and Piperales have also tended to wander around the tree, so now analyses trying to tease apart relationships in this area that do not include both Ceratophyllaceae and Chloranthaceae are essentially incomplete.

As data sets increase in size and sampling of some clades is necessarily constrained - perhaps more Chloranthaceae could be included, but addition of more Ceratophyllaceae is unlikely to affect the issue - the analytical techniques used will become increasingly important (e.g. Jarvis et al. 2014). Thus different seed plant topologies were obtained from analyses using single genes or the same number of sites chosen from twelve separate loci (Burleigh & Mathews 2007a); maximum likelihood and maximum parsimony analyses might show systematic error (Burleigh & Mathews 2007b). Below only more frequently found relationships are discussed, but in more comprehensive analyses such as Moore et al. (2010) and Sun et al. (2014) other "minority" relationships can usually be found.

Chloranthaceae and Ceratophyllaceae. 1. Not immediately related. Hilu et al. (2003: a matK analysis alone), suggested that Ceratophyllaceae were sister to eudicots (see also D. Soltis et al. 2000; Borsch et al. 2005: three rapidly evolving genes, 62% jacknife, 96% posterior probabilities; Müller et al. 2006: 96% posterior probability; some analyses in Saarela et al. 2007; Soltis et al. 2007a: support weak; Qiu & Estabrook 2008; most analyses in Drew et al. 2014). A [Chloranthaceae + magnoliid] clade was recovered by Jansen et al. (2006b) and Hansen et al. (2007). In line with both these previous groupings, Ruhfel et al. (2014: whole chloroplast genomes, support not strong) found that Chloranthaceae tended to be sister to Magnoliales and Ceratophyllaceae to the eudicots; see also most analyses in Drew et al. (2014). Similarly, Ceratophyllum, with quite a long branch, was sister to eudicots (in some reconstructions, Piper, with a very long branch, was also involved), and Chloranthus was sister to the magnoliids (Jansen et al. 2007: moderate to strong support), a position also found by Saarela et al. (2007), many analyses in Moore et al. (2007, 2010), and Smith et al. (2010). The relationships [eudicots [Ceratophyllaceae + Piperaceae]] were found by Xue et al. (2012: ML analysis of whole chloroplast genomes, relationhips around here not the focus of the study).

2. Sister taxa. A [Chloranthales + Ceratophyllales] clade is quite often obtained. The analyses in Mathews (2006a) preferred an unresolved position for this clade somewhere above the Austrobaileyales. Duvall et al. (2006) and Qiu et al. (2010: chloroplast data, support weak) again found a [Chloranthales + Ceratophyllales] clade, as did N. Zhang et al. (2012); see also Huang et al. 2010, weak support using the ycf2 gene; Moore et al. 2011, very weak support In the comprehensive analyses of Sun et al. (2014) this clade was also frequently recovered, although in a variety of positions. Analyses of morphological data gave a grouping [Ceratophyllum + Chloranthaceae] with quite strong support (Endress & Doyle 2009).

3. Other relationships. Drew et al. (2014) also found topologies like [Chloranthaceae [monocots [Ceratophyllaceae + Piperaceae]]], while there was fairly good support for a clade [monocots + Ceratophyllaceae] in a compartmentalised 6-gene analysis (Zanis et al. 2003; see also Qiu et al. 1999; some analyses in Saarela et al. 2007). Qiu et al. (2005; see also Löhne & Borsch 2005) found initial rather strong bootstrap support for a [monocot + Ceratophyllaceae] clade in a 9-gene analysis being vitiated by the failure to obtain much support in any of the subanalyses and by details of the topology obtained in the 9-gene analysis itself (e.g. Acorus sister to the Alismatales included) that are rather improbable. Goloboff et al. (2009) found a [Chloranthaceae + monocot] clade. Moore et al. (2010) i.a. found Ceratophyllum, or [Ceratophyllum + Piper] to be sister to monocots and Chloranthaceae sister to a clade including magnoliids, monocots, and eudicots; the latter pair of relationships with moderate jacknife support were found by Davis et al. (2013) in their comprehensive chloroplast analysis focussing on monocots. Goremykin et al. (2009b: Chloranthaceae not included) found a [Ceratophyllum + magnoliid] clade after removing 2,500 highly variable positions from an analysis of chloroplast genome data; with the removal of 1,000 positions Ceratophyllum was sister to a [monocot + eudicot] clade. Some analyses have suggested a sister taxon relationship between Chloranthaceae and eudicots (Borsch et al. 2003), and this relationship was favoured in several concatenation-based transcriptome analyses by Wickett et al. (2014; no Ceratophyllaceae). Other studies show no clear pattern (e.g. Jansen et al. 2006a; Qiu et al. 2006b). One alignment of 18S/26S nuclear ribosomal data suggested a clade [Ceratophyllaceae + Tofieldiaceae] embedded within the monocots, but thankfully with little support (Maia et al. 2014).

[Chloranthales and Ceratophyllales] successively sister to the magnoliids and monocots (N. Zhang et al. 2012; see also Doyle & Endress 2014).

Relationships Between The Three Major Groups. 1. [Monocots [magnoliids + eudicots]]. Zanis et al. (2002) analysed 11 genes from all genomes and found some support for the magnoliids (strong support for this clade) as being sister to eudicots, with Chloranthaceae, and [monocots + Ceratophyllaceae] occurring as successively more basal branches (see also Graham & Olmstead 2000; Borsch et al. 2003). Support for some of these nodes depended on the method of analysis (see also Borsch et al. 2000; Graham & Olmstead 2000; Hilu et al. 2001; Whitlock et al. 2001; Zanis et al. 2002) or the particular gene studied (see Duvall & Bricker 2002: nuclear 18s; Hilu et al. 2003: matK; Duvall et al. 2006: nuclear 18S in particular causes problems). Soltis et al. (2007a) found very weak support for monocots as sister to [magnoliids, Chloranthaceae, eudicots, etc.]. Lee et al. (2011: Chloranthales and Ceratophyllales not included) found a clade [monocots [magnoliid + eudicot], and with strong support (see also Duarte et al. 2010); Lee et al. (2011) initially looked at almost 23,000 sets of orthologues from nuclear genomes of 101 genera of land plants (most taxa represented by ESTs, genes included if represented in as few as 4 taxa). Such relationships were strongly supported in the 59 low-copy nuclear gene analysis of Zeng et al. (2014: see also some analyses in Moore et al. 2011), and there sampling is not obviously a problem. This basic topology was retrieved in nuclear and mitochondrial analyses by Sun et al. (2014), but in the former [Chloranthales + Ceratophyllales] were sister to magnoliids and in the latter they were sister to monocots. [Magnoliids + Chloranthaceae] were sister to eudicots in coalescent transcriptome analyses, the other two topologies being rejected (Wickett et al. 2014).

2. [Eudicots [monocots + magnoliids]. Eudicots were sister to an unresolved clade including monocots, magnoliids, and Chloranthaceae (D. Soltis et al. 2000; P. Soltis et al. 2000; Wu et al. 2007; Qiu & Estabrook 2008: compatibility analysis). Hilu et al. (2003) in a matK analysis, suggested that magnoliids were sister to monocots, although the support was weak in parsimony analyses if with 100% posterior probabilities in Bayesian analyses, furthermore, in the latter case only, [Chloranthacaeae + monocots] were sister to magnoliids, although the probabilities there were low. Davis et al. (2004) found the magnoliids to be sister to monocots, but in this case Chloranthaceae and Ceratophyllaceae were successively sister to a clade including the few eudicots in the analysis, but support was not exactly overwhelming (the best supported topology in Duvall et al. 2006 is somewhat similar). Müller et al. (2006) found very poorly supported relationships between Chloranthaceae and monocots, which together linked with the magnoliids. In work by Whitlock et al. (2002) largely similar groupings were recognised, but support was only moderate; the exact position of Chloranthaceae remained unclear. Duvall et al. (2006: four genes, three compartments) preferred a relationship between magnoliids and monocots., and Note that Wickett et al. (2014) rejected a clade [monocots [Chloranthaceae + magnoliids]] in their transcriptome study.

3. [Magnoliids [monocots + eudicots]]. A [monocot + eudicot] grouping has quite often been recovered, as in Jansen et al. (2006b: 37 whole chloroplast genomes, see also Zhengqiu et al. 2006), Cai et al. (2006: 35 whole chloroplast genomes, no Chloranthaceae, Ceratophyllaceae, or Austrobaileyales), Duvall et al. (2006: four genes, three compartments, nuclear PHYC gene, 18S being excluded), Mathews (2006a: three PHY genes, 105 taxa), Hansen et al. (2007: 61 protein-coding chloroplast genes), Goloboff et al. (2009), and Xue et al. 2012: whole chloroplast genomes). Graham et al. (2005) found a rather weakly supported (73% bootstrap) [monocot + eudicot] grouping, but this was still more weakly supported when Chloranthaceae and Ceratophyllaceae were included. When sequences of complete chloroplast genomes are analysed, an association between monocots and eudicots may be more strongly suggested. Thus Jansen et al. (2007) found good support for a [monocot + eudicot] grouping, a number of alternative topologies being excluded, but support in Moore et al. (2007) was somewhat less strong. However, the possibility of a [monocot + eudicot] grouping was rejected by Wickett et al. (2014: transcriptome analyses).

Evolution of some floral developmental genes, e.g. in the C and D lineages, are also consistent with a [monocot + eudicot] clade (Kramer et al. 2004), as is the distribution of taxa in which DEF-like proteins cannot form heterodimers (Melzer et al. 2014). The positional relationships between members of the androecium and the perianth, the stamens being individually opposite perianth members, and trimery of some floral whorls occur in a number of taxa, and their distribution is broadly consistent with all three sets of relationships. Variation in how calcium oxalate is synthesized may also be of phylogenetic interest, although sampling is very poor; neither members of the ANITA grade nor magnoliids have been examined. Vacuolar crystal formation associated with membranes and paracrystalline bodies with widely spaced subunits are found in eudicots (crystals seem also to be formed in other ways here), while in monocots there are no membrane complexes and the paracrystalline bodies have closely spaced subunits (Horner & Wagner 1995; Evert 2006). Some patterns of RNA editing may be phylogenetically informative at this level (Logacheva et al. 2008).

4. Other Relationships. Analaysis of morphological data in particular has quite often grouped more or less herbaceous clades in magnoliids and the ANITA grade, i.e. Piperales, Chloranthaceae, and Nymphaeales, with monocots; this is the pal(a)eoherb hypothesis (see e.g. Donoghue & Doyle 1989; Taylor & Hickey 1992; Endress 2000). Analysis of combined morphological and molecular data suggested that Piperales were sister to monocots (Doyle & Endress 2000, support weak), Tamura et al. (2011: 6 plastid, 7 mitochondrial, and 1 nuclear genes sequenced) found some support for this clade, as did Barrett and Davis (2011: or [Piperales + Ceratophyllales] the sister group). However, although quite popular in the latter years of the last century, the palaeoherb support comes from homoplasies associated with the adoption of the herbaceous habit. Indeed, Piperales are now firmly (usually!) embedded in the magnoliid clade, suggestions like that of Parkinson et al. (1999) of a [Piperales + eudicot] and by Ruhfel et al. (2014: amino acid analyses) of a [Piperales + Ceratophyllaceae] clade being exceptions, while Nymphaeales are very near the base of the whole angiosperm clade.

To Conclude. There may be be differing signals in nuclear ([monocots [magnoliids + The Rest]]) and chloroplast ([magnoliids + [monocots + The Rest]]) genes (Xi et al. 2014: Ceratophyllum and Chloranthaceae not included) here. Sun et al. (2014) retrieved the latter set of relationships, but both nuclear and mitochondrial trees recovered a [eudicots [monocots + magnoliids]] topology. However, given the strength of the support for the [monocot [magnoliid + eudicot]] topology, the robustness of the topology to taxon and gene sampling experiments, and the fact that in Wickett et al. (2014) in particular chloroplast genes do not give consistent relationships, this may be the topology of choice. The clade [Chloranthaceae + Ceratophyllaceae] is quite commonly recovered, although to which major clade it should be attached is less clear.

[CHLORANTHALES [[MAGNOLIALES + LAURALES] [CANELLALES + PIPERALES]]]: sesquiterpenes +; (microsporogenesis also simultaneous); seed endotestal.

Age. Moore et al. (2010) estimated an age of (141-)136(-129) m.y. for this node and Xue et al. (2012) an age of ca 143.2 or 141.3 m. years. Clarke et al. (2011) a somewhat older age of (176-)149(-128) m.y., Soltis et al. (2008) suggested (168-)131(-126) m.y., and Magallón et al. (2013) an age of around 149.1 m.y. and Naumann et al. (2013) an age of around 142.5 m.y.; see also Magallón (2009) for other dates around 140-150 m.y. ago. The estimate in Z. Wu et al. (2014, ca 210 m.y.a., is definitely the oldest.

Doyle and Endress (2010) thought that the Pennipollis plant, from ca 120-115 m.y.a. in Portugal and originally linked to the monocots (Petersen et al. 2000b), was sister to Chloranthaceae, a family they considered to be sister to all angiosperms apart from the ANITA grade.

Evolution. Divergence & Distribution. Soltis et al. (2008) suggest ages for a number of branching points within this clade, but they are based on the topology [monocots [Chloranthaceae, magnoliids [Ceratophyllaceae + eudicots]]].

The character, "endotesta palisade, crystaliferous", could perhaps be placed at this node.

Chemistry, Morphology, etc. Microsporogenesis is variable throughout this clade (Furness & Rudall 2004).

CHLORANTHALES Martius  Main Tree.

Branching from the current flush; neolignans ?+; compression wood + [Sarcandra]; nodes often swollen; leaves opposite, joined by sheath, lamina margins toothed, teeth with lateral vein and others [hydathodal]; stipules +; flowers very small, monosymmetric by reduction, parts whorled; P 0, A 1, abaxial; G 1, ascidiate, postgenital fusion by secretion; ovule 1/carpel, apical, pendulous, straight; antipodal cells proliferating; fruit fleshy; endotesta palisade, lignified, crystalliferous. - 1 family, 4 genera, 75 species.

Note: Possible apomorphies are in bold. However, the actual level at which many of these features, particularly the more cryptic ones, should be assigned is unclear. This is partly because many characters show considerable homoplasy, in addition, basic information for all too many is very incomplete, frequently coming from taxa well embedded in the clade of interest and so making the position of any putative apomorphy uncertain. Then there is the not-so-trivial issue of how ancestral states are reconstructed (see above).

Includes Chloranthaceae.

Synonymy: Chloranthineae Thorne & Reveal - Chloranthanae Doweld - Chloranthidae C. Y. Wu

CHLORANTHACEAE Sims, nom. cons.   Back to Chloranthales

Chloranthaceae

Evergreen; (vessels 0); primary stem with vascular cylinder; rays 6-10-seriate; nodes 1:1, 1:2, or ± 3:3, 2 traces from the central or all gaps, (+ split laterals); (sclereids - Hedyosmum); cuticle wax crystalloids 0; stomata variable, laterocytic, etc.; branching from current flush; lamina vernation conduplicate [Chloranthus], teeth with clear persistent swollen cap into which proceed higher order veins as well as secondaries or tertiaries; stipules small, paired, interpetiolar, usually on rim of sheath; (plants dioecious); inflorescence spicate (branched), flowers sessile; staminate flowers: A ± latrorse, lobed, or connective produced or not, (glandular); (apertures star-shaped monosulcate, polycolpate, polyporate); pistillode 0; carpellate flowers: (P +, uniseriate, ± connate, with windows - Hedyosmum); staminode 0; (ovary inferior), stigma ± expanded or not, dry ?or wet; ovules with outer integument 4-8 (2 - Ascarina) cells across, inner integument (3-)7-10 cells across, (micropyle bistomal), parietal tissue 6-8 cells across, nucellar cap +/0; fruit baccate or drupaceous, (bracts accrescent and succulent), (P persistent); coat ± tanniniferous, (mesotesta lignified - Chloranthus), tegmen ± crushed, (exo- and mesotegmen fibrous), endotegmen initially subpalisade; endosperm cellular, starchy, grains clustered); n = 8, 14, 15, chromosomes 1-4(-10: Hedyosmum) µm long.

4[list]/75: Hedyosmum (45). Tropics and subtropics, not Africa (Madagascar - Ascarina only) (map: from Verdcourt 1986; Todzia 1988; Leitman 2014). [Photo - Leaf, Flower.]

Age. Despite the age of the clade (see below), some estimates are that crown group diversification is quite recent, being mostly within the last 60-29 m.y. (Zhang & Renner 2003b; Soltis et al. 2008). However, Magallón and Castillo (2009) estimated the crown group age at ca 153.6 or 125 m.y., Wikström et al. (2001) at 131-121 m.y., Bell et al. (2010) at around 121 or around 98 m.y.a., depending on the analysis, Antonelli and Sanmartín (2011: fossil-based) suggested ages of (112-)111(-110) or thereabouts, while Zhang et al. (2011) provided another series of age estimates, some of which are dramatically older than the others depending on the calibration and the analytical methods used.

Chloranthaceous fossils are common, diverse, and world-wide in distribution in the early angiosperm fossil record. Distinctive fossil pollen grains, Asteropollis, are first known from the Barremian-Aptian of the early Cretaceous, some 125 m.y. before present (Friis et al. 1997; Doyle 1999; Eklund 1999, but c.f. Clarke et al. 2011, questions over dating); these grains have been identified as belonging to Hedyosmum (see also Crepet & Nixon 1996; Eklund et al. 2003; Friis et al. 2005; Martínez et al. 2013). Doyle and Endress (2007) and Clarke et al. (2011) discuss other palynomorphs that have been associated with Chloranthaceae; some fossil androecia assigned to the family have spiraperturate pollen that is in situ (Crane et al. 1989)! For the evolution of the chloranthaceous flower and integrating fossils into the scenario, see Doyle and Endress (2014); the flowers of Chloranthus and Sarcandra are secondarily perfect/bisexual.

Evolution. Divergence & Distribution. With older estimates of the family age, all genera had separated by ca 90 m.y.a. (e.g. Wikström et al. 2000; Antonelli & Sanmartín 2011). Diversification within Hedyosmum could be dated to (57.1-)43.3(-30.1) or (43-)35.6-(25.9) m.y.a. depending on the method used, and was in part associated with the Andean uplift, although the family as a whole showed a pattern of gradual extinction over time (Antonelli & Sanmartín 2011).

For general morphological evolution, living and fossil Chloranthaceae integrated, see Eklund et al. (2004). Endress (2001) emphasized what he considered to be the plesiomorphic floral morphology of the family. However, there is no evidence that it is a member of the ANITA grade, and several aspects of its floral morphology and development, including the loss of any perianth, are clearly derived (e.g. Li et al. 2005). Given the relationships within the family (see below), simple parsimony suggests that perfect flowers are developed from imperfect flowers (see also Doyle & Endress 2011).

Chemistry, Morphology, etc. Although benzylisoquinoline alkaloids apparently have not been detected in Chloranthaceae, (S)norcolaurine synthase activity is high, suggesting that they may be found here (Liscombe et al. 2005). Roots - presumably those of the seedlings and young plants - seem not have any secondary thickening (Blanc 1986)?

For some discussion of infloresecence morphology, see Doria et al. (2012). The perianth of Hedyosmum has unique, schizogenous apertures/windows (Doria et al. 2012 and references). Crane et al. (1989), Crepet and Nixon (1997), Eklund et al. (1997), Eklund (1999), and others discuss the nature of the androecium in the family, a matter over which there has been considerable controversy. In Chloranthus it has been suggested that the androecium is lobed, with 2 or 4 dithecal stamens(!!?), and that staminate flowers of Hedyosmum have hundreds of anthers, however, here as elsewhere the stamens seem to be dithecal (Kong et al. 2002, and references). Doria et al. (2012) illustrate a superior gynoecium in Hedyosmum. The stylulus is filled with secretion. Endress and Igersheim (1997) describe the stigma as being wet (c.f. Todzia 1988). The ovule in Chloranthus is not quite straight ("subatropous" - Yamada et al. 2001a). For variation in micropyle type, see Heo and Tobe (1995). Johri et al. (1992) noted that the endosperm stores oil, but there may also be starch. The cotyledonary nodes has split laterals (Bailey 1956).

For general information, see Swamy (1953), Todzia (1988, 1993) and Eklund (1999), for chemistry, see Hegnauer (1964, 1989), young plants, see Blanc (1986), general vegetative anaomy, see Metcalfe (1987), for wood anatomy, see Carlquist (1992a), for reaction wood, see Aiso et al. (2014), for embryology, see Vijayaraghavan (1964), and for floral development, see Endress (1987b) and G. S. Li et al. (2005).

Phylogeny. Within Chloranthaceae, morphological analyses, including details of wood anatomy, suggested the genus pairs [Ascarina + Hedyosmum], mainly woody, plant monoecious to dioecious, and [Chloranthus + Sarcandra], herbaceous to semi-shrubby, flowers perfect. In molecular work (Qiu et al. 1999), on the other hand, the relationships [Hedyosmum [Ascarina [Chloranthus + Sarcandra]]] were found. Although there was strong support, the sampling was rather minimal, but the same set of relationships were confirmed by Zhang and Renner (2003b) and Zhang et al. (2011), both with a much improved sampling. They have also been found in subsequent morphological analyses with constrained outgroups (Doyle et al. 2003; Eklund et al. 2004).

Previous Relationships. Cronquist (1981) included Chloranthaceae in his Piperales while Takhtajan (1997) placed Chloranthales after Calycanthales at the end of his Magnoliidae.

Synonymy: Hedyosmaceae Caruel