EMBRYOPSIDA Pirani & Prado

Gametophyte dominant, independent, multicellular, initially ±globular, not motile, branched; showing gravitropism; acquisition of phenylalanine lysase* [PAL], flavonoid synthesis*, microbial terpene synthase-like genes +, triterpenoids produced by CYP716 enzymes, CYP73 and phenylpropanoid metabolism [development of phenolic network], xyloglucans in primary cell wall, side chains charged; plant poikilohydrous [protoplasm dessication tolerant], ectohydrous [free water outside plant physiologically important]; thalloid, leafy, with single-celled apical meristem, tissues little differentiated, rhizoids +, unicellular; chloroplasts several per cell, pyrenoids 0; glycolate metabolism in leaf peroxisomes [glyoxysomes]; centrioles/centrosomes in vegetative cells 0, microtubules with γ-tubulin along their lengths [?here], interphase microtubules form hoop-like system; metaphase spindle anastral, predictive preprophase band + [with microtubules and F-actin; where new cell wall will form], phragmoplast + [cell wall deposition centrifugal, from around the anaphase spindle], plasmodesmata +; antheridia and archegonia +, jacketed*, surficial; mblepharoplast +, centrioles develop de novo, bicentriole pair coaxial, separate at midpoint, centrioles rotate, associated with basal bodies of cilia, multilayered structure + [4 layers: L1, L4, tubules; L2, L3, short vertical lamellae] (0), spline + [tubules from L1 encircling spermatid], basal body 200-250 nm long, associated with amorphous electron-dense material, microtubules in basal end lacking symmetry, stellate array of filaments in transition zone extended, axonemal cap 0 [microtubules disorganized at apex of cilium]; male gametes [spermatozoids] with a left-handed coil, cilia 2, lateral; oogamy; sporophyte +*, multicellular, growth 3-dimensional*, cuticle +*, plane of first cell division transverse [with respect to long axis of archegonium/embryo sac], sporangium and upper part of seta developing from epibasal cell [towards the archegonial neck, exoscopic], with at least transient apical cell [?level], initially surrounded by and dependent on gametophyte, placental transfer cells +, in both sporophyte and gametophyte, wall ingrowths develop early; suspensor/foot +, cells at foot tip somewhat haustorial; sporangium +, single, terminal, dehiscence longitudinal; meiosis sporic, monoplastidic, MTOC [MTOC = microtubule organizing centre] associated with plastid, sporocytes 4-lobed, cytokinesis simultaneous, preceding nuclear division, quadripolar microtubule system +; wall development both centripetal and centrifugal, 1000 spores/sporangium, sporopollenin in the spore wall* laid down in association with trilamellar layers [white-line centred lamellae; tripartite lamellae]; plastid transmission maternal; nuclear genome [1C] <1.4 pg, main telomere sequence motif TTTAGGG, KNOX1 and KNOX2 [duplication] and LEAFY genes present, ethylene involved in cell elongation; chloroplast genome with close association between trnLUAA and trnFGAA genes [precursors for starch synthesis], tufA, minD, minE genes moved to nucleus; mitochondrial trnS(gcu) and trnN(guu) genes +.

Many of the bolded characters in the characterization above are apomorphies of more or less inclusive clades of streptophytes along the lineage leading to the embryophytes, not apomorphies of crown-group embryophytes per se.

All groups below are crown groups, nearly all are extant. Characters mentioned are those of the immediate common ancestor of the group, [] contains explanatory material, () features common in clade, exact status unclear.


Sporophyte well developed, branched, branching dichotomous, potentially indeterminate; hydroids +; stomata on stem; sporangia several, terminal; spore walls not multilamellate [?here].


Sporophyte long lived, cells polyplastidic, photosynthetic red light response, stomata open in response to blue light; plant homoiohydrous [water content of protoplasm relatively stable]; control of leaf hydration passive; plant endohydrous [physiologically important free water inside plant]; PIN[auxin efflux facilitators]-mediated polar auxin transport; (condensed or nonhydrolyzable tannins/proanthocyanidins +); xyloglucans with side chains uncharged [?level], in secondary walls of vascular and mechanical tissue; lignins +; roots +, often ≤1 mm across, root hairs and root cap +; stem apex multicellular [several apical initials, no tunica], with cytohistochemical zonation, plasmodesmata formation based on cell lineage; vascular development acropetal, tracheids +, in both protoxylem and metaxylem, G- and S-types; sieve cells + [nucleus degenerating]; endodermis +; stomata numerous, involved in gas exchange; leaves +, vascularized, spirally arranged, blades with mean venation density ca 1.8 mm/mm2 [to 5 mm/mm2], all epidermal cells with chloroplasts; sporangia adaxial, columella 0; tapetum glandular; ?position of transfer cells; MTOCs not associated with plastids, basal body 350-550 nm long, stellate array in transition region initially joining microtubule triplets; archegonia embedded/sunken [only neck protruding]; suspensor +, shoot apex developing away from micropyle/archegonial neck [from hypobasal cell, endoscopic], root lateral with respect to the longitudinal axis of the embryo [plant homorhizic].


Sporophyte growth ± monopodial, branching spiral; roots endomycorrhizal [with Glomeromycota], lateral roots +, endogenous; G-type tracheids +, with scalariform-bordered pits; leaves with apical/marginal growth, venation development basipetal, growth determinate; sporangium dehiscence by a single longitudinal slit; cells polyplastidic, MTOCs diffuse, perinuclear, migratory; blepharoplasts +, paired, with electron-dense material, centrioles on periphery, male gametes multiciliate; nuclear genome size [1C] = 7.6-10 pg [mode]; chloroplast long single copy ca 30kb inversion [from psbM to ycf2]; mitochondrion with loss of 4 genes, absence of numerous group II introns; LITTLE ZIPPER proteins.


Sporophyte woody; stem branching lateral, meristems axillary; lateral root origin from the pericycle; cork cambium + [producing cork abaxially], vascular cambium bifacial [producing phloem abaxially and xylem adaxially].


Growth of plant bipolar [roots with positive geotropic response]; plants heterosporous; megasporangium surrounded by cupule [i.e. = unitegmic ovule, cupule = integument]; pollen lands on ovule; megaspore germination endosporic [female gametophyte initially retained on the plant].


Plant evergreen; nicotinic acid metabolised to trigonelline, (cyanogenesis via tyrosine pathway); microbial terpene synthase-like genes 0; primary cell walls rich in xyloglucans and/or glucomannans, 25-30% pectin [Type I walls]; lignin chains started by monolignol dimerization [resinols common], particularly with guaiacyl and p-hydroxyphenyl [G + H] units [sinapyl units uncommon, no Maüle reaction]; roots often ≥1 mm across, stele diarch to pentarch, xylem and phloem originating on alternating radii, cork cambium deep seated; stem apical meristem complex [with quiescent centre, etc.], plasmodesma density in SAM 1.6-6.2[mean]/μm2 [interface-specific plasmodesmatal network]; eustele +, protoxylem endarch, endodermis 0; wood homoxylous, tracheids and rays alone, tracheid/tracheid pits circular, bordered; mature sieve tube/cell lacking functioning nucleus, sieve tube plastids with starch grains; phloem fibres +; cork cambium superficial; leaf nodes 1:1, a single trace leaving the vascular sympodium; leaf vascular bundles amphicribral; guard cells the only epidermal cells with chloroplasts, stomatal pore with active opening in response to leaf hydration, control by abscisic acid, metabolic regulation of water use efficiency, etc.; axillary buds +, exogenous; prophylls two, lateral; leaves with petiole and lamina, development basipetal, lamina simple; sporangia borne on sporophylls; spores not dormant; microsporophylls aggregated in indeterminate cones/strobili; grains monosulcate, aperture in ana- position [distal], primexine + [involved in exine pattern formation with deposition of sporopollenin from tapetum there], exine and intine homogeneous, exine alveolar/honeycomb; ovules with parietal tissue [= crassinucellate], megaspore tetrad linear, functional megaspore single, chalazal, sporopollenin 0; gametophyte ± wholly dependent on sporophyte, development initially endosporic [apical cell 0, rhizoids 0, etc.]; male gametophyte with tube developing from distal end of grain, male gametes two, developing after pollination, with cell walls; female gametophyte initially syncytial, walls then surrounding individual nuclei; embryo cellular ab initio, suspensor short-minute, embryonic axis straight [shoot and root at opposite ends], primary root/radicle produces taproot [= allorhizic], cotyledons 2; embryo ± dormant; chloroplast ycf2 gene in inverted repeat, trans splicing of five mitochondrial group II introns, rpl6 gene absent; ??whole nuclear genome duplication [ζ - zeta - duplication], 2C genome size (0.71-)1.99(-5.49) pg, two copies of LEAFY gene, PHY gene duplications [three - [BP [A/N + C/O]] - copies], 5.8S and 5S rDNA in separate clusters.


Lignans, O-methyl flavonols, dihydroflavonols, triterpenoid oleanane, apigenin and/or luteolin scattered, [cyanogenesis in ANA grade?], lignin also with syringyl units common [G + S lignin, positive Maüle reaction - syringyl:guaiacyl ratio more than 2-2.5:1], hemicelluloses as xyloglucans; root cap meristem closed (open); pith relatively inconspicuous, lateral roots initiated immediately to the side of [when diarch] or opposite xylem poles; epidermis probably originating from inner layer of root cap, trichoblasts [differentiated root hair-forming cells] 0, hypodermis suberised and with Casparian strip [= exodermis]; shoot apex with tunica-corpus construction, tunica 2-layered; starch grains simple; primary cell wall mostly with pectic polysaccharides, poor in mannans; tracheid:tracheid [end wall] plates with scalariform pitting, multiseriate rays +, wood parenchyma +; sieve tubes enucleate, sieve plate with pores (0.1-)0.5-10< µm across, cytoplasm with P-proteins, not occluding pores of plate, companion cell and sieve tube from same mother cell; ?phloem loading/sugar transport; nodes 1:?; dark reversal Pfr → Pr; protoplasm dessication tolerant [plant poikilohydric]; stomata randomly oriented, brachyparacytic [ends of subsidiary cells level with ends of pore], outer stomatal ledges producing vestibule, reduction in stomatal conductance with increasing CO2 concentration; lamina formed from the primordial leaf apex, margins toothed, development of venation acropetal, overall growth ± diffuse, secondary veins pinnate, fine venation hierarchical-reticulate, (1.7-)4.1(-5.7) mm/mm2, vein endings free; flowers perfect, pedicellate, ± haplomorphic, protogynous; parts free, numbers variable, development centripetal; P = T, petal-like, each with a single trace, outer members not sharply differentiated from the others, not enclosing the floral bud; A many, filament not sharply distinguished from anther, stout, broad, with a single trace, anther introrse, tetrasporangiate, sporangia in two groups of two [dithecal], each theca dehiscing longitudinally by a common slit, ± embedded in the filament, walls with at least outer secondary parietal cells dividing, endothecium +, cells elongated at right angles to long axis of anther; tapetal cells binucleate; microspore mother cells in a block, microsporogenesis successive, walls developing by centripetal furrowing; pollen subspherical, tectum continuous or microperforate, ektexine columellate, endexine lamellate only in the apertural regions, thin, compact, intine in apertural areas thick, orbicules +, pollenkitt +; nectary 0; carpels present, superior, free, several, spiral, ascidiate [postgenital occlusion by secretion], stylulus at most short [shorter than ovary], hollow, cavity not lined by distinct epidermal layer, stigma ± decurrent, carinal, dry; suprastylar extragynoecial compitum +; ovules few [?1]/carpel, marginal, anatropous, bitegmic, micropyle endostomal, outer integument 2-3 cells across, often largely subdermal in origin, inner integument 2-3 cells across, often dermal in origin, parietal tissue 1-3 cells across, nucellar cap?; megasporocyte single, hypodermal, functional megaspore lacking cuticle; female gametophyte lacking chlorophyll, four-celled [one module, nucleus of egg cell sister to one of the polar nuclei]; ovule not increasing in size between pollination and fertilization; pollen grains bicellular at dispersal, germinating in less than 3 hours, siphonogamy, pollen tube unbranched, growing towards the ovule, between cells, growth rate (20-)80-20,000 µm/hour, apex of pectins, wall with callose, lumen with callose plugs, penetration of ovules via micropyle [porogamous], whole process takes ca 18 hours, distance to first ovule 1.1-2.1 mm; male gametophytes tricellular, gametes 2, lacking cell walls, ciliae 0, double fertilization +, ovules aborting unless fertilized; fruit indehiscent, P deciduous; mature seed much larger than fertilized ovule, small [<5 mm long], dry [no sarcotesta], exotestal; endosperm +, ?diploid [one polar nucleus + male gamete], cellular, development heteropolar [first division oblique, micropylar end initially with a single large cell, divisions uniseriate, chalazal cell smaller, divisions in several planes], copious, oily and/or proteinaceous, embryo short [<¼ length of seed]; plastid and mitochondrial transmission maternal; Arabidopsis-type telomeres [(TTTAGGG)n]; nuclear genome [2C] (0.57-)1.45(-3.71) [1 pg = 109 base pairs], ??whole nuclear genome duplication [ε/epsilon event]; ndhB gene 21 codons enlarged at the 5' end, single copy of LEAFY and RPB2 gene, knox genes extensively duplicated [A1-A4], AP1/FUL gene, palaeo AP3 and PI genes [paralogous B-class genes] +, with "DEAER" motif, SEP3/LOFSEP and three copies of the PHY gene, [PHYB [PHYA + PHYC]]; chloroplast chlB, -L, -N, trnP-GGG genes 0.

[NYMPHAEALES [AUSTROBAILEYALES [[CHLORANTHALES + MAGNOLIIDS] [MONOCOTS [CERATOPHYLLALES + EUDICOTS]]]]]: wood fibres +; axial parenchyma diffuse or diffuse-in-aggregates; pollen monosulcate [anasulcate], tectum reticulate-perforate [here?]; ?genome duplication; "DEAER" motif in AP3 and PI genes lost, gaps in these genes.

[AUSTROBAILEYALES [[CHLORANTHALES + MAGNOLIIDS] [MONOCOTS [CERATOPHYLLALES + EUDICOTS]]]]: phloem loading passive, via symplast, plasmodesmata numerous; vessel elements with scalariform perforation plates in primary xylem; essential oils in specialized cells [lamina and P ± pellucid-punctate]; tectum reticulate-perforate, nucellar cap + [character lost where in eudicots?]; 12BP [4 amino acids] deletion in P1 gene.

[[CHLORANTHALES + MAGNOLIIDS] [MONOCOTS [CERATOPHYLLALES + EUDICOTS]]] / MESANGIOSPERMAE: benzylisoquinoline alkaloids +; sesquiterpene synthase subfamily a [TPS-a] [?level], polyacetate derived anthraquinones + [?level]; outer epidermal walls of root elongation zone with cellulose fibrils oriented transverse to root axis; P more or less whorled, 3-merous [?here]; pollen tube growth intra-gynoecial; extragynoecial compitum 0; carpels plicate [?here]; embryo sac monosporic [spore chalazal], 8-celled, bipolar [Polygonum type], antipodal cells persisting; endosperm triploid.

[MONOCOTS [CERATOPHYLLALES + EUDICOTS]]: (veins in lamina often 7-17 mm/mm2 or more [mean for eudicots 8.0]); (stamens opposite [two whorls of] P); (pollen tube growth fast).

[CERATOPHYLLALES + EUDICOTS]: ethereal oils 0 [or next node up]; fruit dry [very labile].

EUDICOTS: (Myricetin +), asarone 0 [unknown in some groups, + in some asterids]; root epidermis derived from root cap [?Buxaceae, etc.]; (vessel elements with simple perforation plates in primary xylem); nodes 3:3; stomata anomocytic; flowers (dimerous), cyclic; protandry common; K/outer P members with three traces, ("C" +, with a single trace); A ?, filaments fairly slender, anthers basifixed; microsporogenesis simultaneous, pollen tricolpate, apertures in pairs at six points of the young tetrad [Fischer's rule], cleavage centripetal, wall with endexine; G with complete postgenital fusion, stylulus/style solid [?here]; seed coat?

[PROTEALES [TROCHODENDRALES [BUXALES + CORE EUDICOTS]]]: (axial/receptacular nectary +).

[TROCHODENDRALES [BUXALES + CORE EUDICOTS]]: benzylisoquinoline alkaloids 0; euAP3 + TM6 genes [duplication of paleoAP3 gene: B class], mitochondrial rps2 gene lost.

[BUXALES + CORE EUDICOTS]: mitochondrial rps11 gene lost.

CORE EUDICOTS / GUNNERIDAE: (ellagic and gallic acids +); leaf margins serrate; compitum + [one position]; micropyle?; γ whole nuclear genome duplication [palaeohexaploidy, gamma triplication], x = 21, 2C genome size (0.79-)1.05(-1.41) pg, PI-dB motif +; small deletion in the 18S ribosomal DNA common.

[ROSIDS ET AL. + ASTERIDS ET AL.] / PENTAPETALAE: root apical meristem closed; (cyanogenesis also via [iso]leucine, valine and phenylalanine pathways); flowers rather stereotyped: 5-merous, parts whorled; P = K + C, K enclosing the flower in bud, with three or more traces, C with single trace; A = 2x K/C, in two whorls, internal/adaxial to C, alternating, (numerous, but then usually fasciculate and/or centrifugal); pollen tricolporate; G [(3, 4) 5], whorled, placentation axile, style +, stigma not decurrent; compitum +; endosperm nuclear; fruit dry, dehiscent, loculicidal [when a capsule]; floral nectaries with CRABSCLAW expression.

[DILLENIALES [SAXIFRAGALES [VITALES + ROSIDS s. str.]]]: stipules + [usually apparently inserted on the stem].


[VITALES + ROSIDS] / ROSIDAE: anthers ± dorsifixed, transition to filament narrow, connective thin.

ROSIDS: (mucilage cells with thickened inner periclinal walls and distinct cytoplasm); if nectary +, usu. receptacular; embryo long; chloroplast infA gene defunct, mitochondrial coxII.i3 intron 0.




[SAPINDALES [HUERTEALES [MALVALES + BRASSICALES]]]: flavonols +; vessel elements with simple perforation plates; (cambium storied); petiole bundle(s) annular; style +; inner integument thicker than outer; endosperm at most scanty.

Age. Suggestions for the age of this node are (88-)71(-63) m.y. (N. Zhang et al. 2012; see also Xue et al. 2012), (102-)96(-90) and (80-)76(-72) m.y. (H. Wang et al. 2009), ca 98.25 m.y. (Magallón & Castillo 2009), around 93.6-89.9 m.y. (Naumann et al. 2013), about 103.5 m.y. (Hohmann et al. 2015), ca 111 m.y. (Foster et al. 2016a: q.v. for details) or (116.9-)111.5(-106.2) m.y. (Muellner-Riehl et al. 2016).

Evolution: Divergence & Distribution. For integument thickness, a possible apomorphy, which, however, reverses, see Endress and Matthew (2006a), moreover, its condition is unclear in Huerteales, etc..

Genes & Genomes. Based on a study of the genome of Arabidopsis, De Bodt et al. (2005, see also Maere et al. 2005) suggest there was a duplication of the whole genome some 109-66 m.y. before present, although given the uncertainty over the dating of this duplication and relationships within rosids, exactly where the duplication should go on the tree is unclear. A position at this node is one possibility.

There are suggestions that the chloroplast infA gene was lost or became a pseudogene at this node (Logacheva & Shipunov 2017; see also Millen et al. 2001; Su et al. 2014).

Phylogeny. Relationships between the malvid clades have been somewhat uncertain. The clade [Malvales + Sapindales] was sister group to Brassicales (Soltis et al. 2000; Peng et al 2003: both weak support; Bell et al. 2010), and Endress and Matthews (2006) noted that there are some features perhaps more common in these first two families than elsewhere in this affinity. Other studies suggest that [Malvales + Sapindales] may be sister to [Brassicales + Huerteales] (Soltis et al. 2007a: support weak for the latter pair; Bell et al. 2010). Although Bausher et al. (2006) in an analysis of whole chloroplast genomes found strong support for the clade [Brassicales + Malvales], only one species from the three larger orders and no Huerteales were included (but see also S.-B. Lee et al. 2006: sampling even more exiguous; Jansen et al. 2007; Moore et al. 2007; Muellner-Riehl et al. 2016). There was also some support for this topology in analyses by Savolainen et al. (2000) and Hilu et al. (2003). Alford (2006), when describing his Gerrardinaceae, found that Huerteales (Perrottetia not included), Brassicales and Malvales formed a tritomy, the combined group being rather poorly supported as sister to Sapindales, while Worberg et al. (2007b, 2009) recovered the relationships [Sapindales [Huerteales [Brassicales + Malvales]]], with strong support, and they found that each of the four orders was monophyletic. In studies including the mitochondrial matR gene, although the malvid clade was recovered, relationships within it were unclear (Zhu et al. 2007). I follow Worberg et al. (2009).

SAPINDALES Berchtold & J. Presl - Main Tree.

Interesting secondary compounds, ethereal oils, myricetin +; (secretory cells/tissue +); mucilage cells + [with swollen and layered inner periclinal walls - position in plant varies]; branching from previous innovation, petioles leaving a prominent scar; leaves spiral, odd-pinnately compound, leaflets opposite, vernation conduplicate; inflorescence branches, at least, cymose; A 2 x K, (± obdiplostemonous); tapetal cells polyploid; (pollen exine distinctly striate); nectary well developed; G = and opposite petals, or 3, odd member adaxial, stigmatic head from postgenitally united free carpel tips; ovules few/carpel, epitropous, nucellar cap + [?all]; exotegmen not fibrous; (embryo chlorophyllous). - 9 families, 479 genera, 6,550 species.

Note: In all node characterizations, boldface denotes a possible apomorphy, (....) denotes a feature the exact status of which in the clade is uncertain, [....] includes explanatory material; other text lists features found pretty much throughout the clade. Note that the particular node to which many characters, particularly the more cryptic ones, should be assigned is unclear. This is partly because homoplasy is very common, in addition, basic information for all too many characters is very incomplete, frequently coming from taxa well embedded in the clade of interest and so making the position of any putative apomorphy uncertain. Then there are the not-so-trivial issues of how character states are delimited and ancestral states are reconstructed (see above).

Age. The age of crown-group Sapindales has been variously estimated as 117.4, 104.9, and 90.5 m.y. (Muellner et al. 2007: c.f. topology) or (110.5-)105(-99) m.y. (Muellner-Riehl et al. 2016).

Evolution: Divergence & Distribution. Sapindales contain ca 3% eudicot diversity (Magallón et al. 1999) and show quite high diversification rates (Magallón & Castillo 2009).

Muellner-Riehl et al. (2016: Table S1) discusss dating in this clade - they provide dates for hundreds of nodes - in some detail. They prefered ages from analyses using three maximum constraints over those using one or no such constraints; ages in the latter case were ca 1.7-3 times those when three constraints were used - e.g. ca 441 versus ca 148 m.y. for the eudicot stem age... Their ages for families were older than those in earlier general studies that included Sapindales, but younger for the most part than studies that focussed on a single family (Muellner-Riehl et al. 2016: esp. Table 5).

For some embryological s.l. features possibly characterizing Sapindales, see Yamamoto et al. (2016), q.v. for cautions on numbers of nuclei in/polyploidy of tapetal cells.

Pollination Biology. There is notable variation in dichogamy here, see e.g. Bertin and Newman (1993), Routley et al. (2004).

Plant-Animal Interactions. Associated with the frequent accumulation of noxious secondary metabolites in Sapindales, specialised herbivores are found on many of this group. Thus the hemipteran psyllid Calophya eats largely Anacardiaceae, Burseraceae, Simaroubaceae and Rutaceae (Burckhardt & Basset 2000) - plus a couple of records from entirely unrelated families. A notable diversity of monoterpene synthase genes have been found in Sapindales studied, and the products of these genes may be involved either directly in plant defence, or indirectly by signalling to parasitoids of herbivores, but studies of these genes are currently only preliminary (Zapata & Fine 2013 and references). Galls are quite common, perhaps especially on Sapindaceae and Anacardiaceae (Mani 1964; see also Price et al. 1998).

Chemistry, Morphology, etc. Gums and resins occur in both the Rutaceae-Meliaceae-Simaroubaceae and Burseraceae-Anacardiaceae groups (Nair 1995).

Stratified phloem may be quite widespread (in some Meliaceae, Burseraceae and Simaroubaceae, at least: M. Ogburn, pers. comm.), also Sapindaceae. Teeth, when present, have a clear glandular apex broadening distally and with a foramen and two accessory veins (or one, the other going above the tooth (Hickey & Wolfe 1975). Stipular structures that vary in morphology are scatteerd through the order (Cruz et al. 2015 for examples and references), and these may be modified basal leaflet pairs; some have been described as pseudostipules or metastipules, the latter being defined as structures having the morphology of true stipules, yet there was good reason to believe that they were derived from pseudostipules... (Weberling & Leenhouts 1965).

Bachelier and Endress (2009) note some floral developmental features found widely in this clade, while Yamamoto et al. (2014: esp. Table S1) compare embryological features; for some details of embryology, see also Mauritzon (1936). Inconspicuous oblique monosymmetry may be common in the order, and although many Sapindaceae, for example, are more strongly monosymmetric, it is oblique in e.g. Aesculus (Cao et al. 2017). The flowers are often imperfect, but since staminate and carpellate flowers have well-developed pistillodes and staminodes respectively, they can be difficult to distinguish. Floral tubes formed by connate or closely adpressed and flattened filaments occur throughout Meliaceae, in a number of Rutaceae, and in Boswellia dioscorides (Burseraceae); they are uncommon elsewhere. Pollen with striate exine is scattered through the order. Septal cavities have been noticed in Cneorum (Rutaceae) and Koelreuteria (Sapindaceae), but they do not secrete nectar (Caris et al. 2006b, c.f. septal nectaries in monocots).

Phylogeny. For general relationships, see Gadek et al. (1996), while Pell (2004) notes some deletions and insertions that may characterise groupings within the clade. Muellner et al. (2007) present a two-gene tree with quite good sampling; their results, albeit poorly supported, suggest the basal relationships in the tree here (also poorly supported in Soltis et al. 2011), and the position of Sapindaceae is unresolved (see esp. Muellner-Riehl et al. 2016). There was also a fair bit of resolution elsewhere, excepting an only moderately-supported sister group relationship between Meliaceae and Simaroubaceae (see also Koenen et al. 2015; Muellner-Riehl et al. 2016; but c.f. Gadek et al. 1996; Soltis et al. 2011: ?sampling). Relationships are somewhat different in Wang et al. (2009), but support was weak and sampling poor, and support was again mostly poor in M. Sun et al. (2016), although there was some support for a [Nitrariaceae + Biebersteiniaceae] clade sister to the rest of the order (see also Muellner-Riehl et al. 2016), while the relationships [Nitrariaceae [Biebersteiniaceae + The Rest]] in Z.-D. Chen et al. (2016) also had little support.

Molecular data had early placed Biebersteinia, ex Geraniaceae, in Sapindales, albeit with a long branch (Bakker et al. 1998). Its herbaceous habit is rather unusual for Sapindales, but its ethereal oils (no oxygenated sequiterpenes, high proportion of aliphatic hydrocarbons - Bate Smith 1973; Greenham et al. 2001), single ovule/carpel, etc., are all congruent with a position here.

Relationships. Bretschneideraceae and Akaniaceae (= Akaniaceae here, see Brassicales here) have been associated with Sapindales, Bretschneidera in particular looking very like a member of Sapindaceae, however, the myrosin cells in the former were not considered to be all that important (Cronquist 1981; Takhtajan 1997).

Includes Anacardiaceae, Biebersteiniaceae, Burseraceae, Kirkiaceae, Meliaceae, Nitrariaceae, Rutaceae, Sapindaceae, Simaroubaceae.

Synonymy: Rutinae Reveal - Acerales Berchtold & J. Presl, Aesculales Bromhead, Amyridales J. Presl, Aurantiales Link, Biebersteiniales Takhtajan, Burserales Martius, Cedrelales Martius, Citrales Dumortier, Cneorales Link, Diosmales J. Presl, Hippocastanales Link, Julianales Engler, Leitneriales Engler, Meliales Berchtold & J. Presl, Nitrariales Martius, Pteleales Link, Rutales Berchtold & J. Presl, Simaroubales Berchtold & J. Presl, Spondiadales Martius, Terebinthales Dumortier, Zanthoxylales J. Presl - Burseranae Doweld, Rutanae Takhtajan, Sapindanae Doweld - Aceropsida Endlicher, Aesculopsida Brongniart, Rutopsida Meisner - Rutidae Doweld

Biebersteiniaceae + Nitrariaceae]: ?.

Age. The age of this node (if it exists) is (107.6-)94.5(-79.4) m.y. (Muellner-Riehl et al. 2016).

BIEBERSTEINIACEAE Schnitzlein  - Back to Sapindales


Rhizomatous perennial herbs; vessels?; nodes?; hairs glandular; leaves (2-3-compound), leaflets lobed, margins toothed, stipules +, petiolar, lobed or not; inflorescence terminal, axis indeterminate; C clawed, (denticulate); nectary glands opposite K; anther thecae opening by single slit; tapetal cells up to 12-nucleate, nuclei fuse; pollen 3-celled, exine striate; gynophore +, short, G [5], styles separate, impressed, apically connate, stigma capitate; ovule 1/carpel, initially apotropous, unitegmic, integument 4-5 cells across, (nucellar cap ca 2 cells across), nucellus apex exposed, parietal tissue 3-4 cells across, funicle massive, bent; embryo sac tetrasporic, 16-nucleate, 13-celled [Penaea type]; fruit a schizocarp, columella persisting, K ± accrescent; exotesta ± collapsed, endotesta lignified, cells polygonal; endosperm +/-, pentaploid, embryo somewhat curved, cotyledons foliaceous, incumbent; n = 5.

1[list]/5. Greece to Central Asia (map: from Heywood 2007; Muellner et al. 2007). [Photos - Collection.]

Age. The age of crown-group Biebersteiniaceae is estimated as 63.3-54.8 m.y. (Muellner et al. 2007) or (55-)34.7(-16.1) m.y. (Muellner-Riehl et al. 2016).

Chemistry, Morphology, etc. At least some species of Biebersteinia are foul-smelling.

The antipetalous stamens are longest. Takhtajan (1997) and Yamamoto et al. (2014) both described the ovules as being unitegmic; however, Boesewinkel (1988, 1997) thought that the ovules were bitegmic and the micropyle was bistomal. There are distinctive changes in the ovule as it develops, and at the time of pollination the nucellus apex is exposed (Yamamoto et al. 2014).

See also Baillon (1874), Kunth (1912) and Muellner (2011), all general, Hegnauer (1989, as Geraniaceae) and Tzakou et al. (2001: fatty acids), both chemistry, and Kamelina and Konnova (1989: embryology).

Biebersteinia is little known.

Relationships. Biebersteinia has often been more or less closely associated with Geraniaceae (Geraniales) in the past (e.g. Cronquist 1981; Takhtajan 1997). Boesewinkel (1988, 1997), who thought that the ovules were bitegmic (but see above), saw a similarity of the seed coat of Biebersteinia and that of Vivianaceae (= Geraniales-Francoaceae-Vivianeae), especially when young, with both exotesta and endotegmen being tanniniferous.

NITRARIACEAE Lindley  - Back to Sapindales


-carboline alkaloids +, ethereal oils?, saponins 0; cork in inner cortex; wood storied; nodes?; petiole bundle arcuate, with wing bundles; mucilage cells +, throughout plant or not; cuticle waxes 0 (platelets, rodlets); leaves thick/fleshy, ?vernation, simple, ± deeply lobed, stipules +; inflorescence terminal; K (connate); C protects the flower in bud; A 15, filament bases broad, flattened; tapetal cells binucleate; G [3 (4)], stigma as commissural compital lines ± decurrent down style, dry; ovule micropyle zig-zag or bistomal, outer integument 2-4 cells across, inner integument 2-3 or 4-7 cells [which?] across, parietal tissue 2-4 cells across; exotesta cells inflated or not; endotesta short palisade, or not.

3 [list]/13. Usu. ± arid regions from North Africa to East Asia, also S.W. Australia and E. Mexico (map: from Brummitt 2007; modified by Frankenberg & Klaus 1980; Pan et al. 1999; Trop. Afr. Fl. Pl. Ecol. Distr. 1. 2003; Fl. Austral. vol. 26. 2013). [Photo - Flowers.]

Age. The age of crown-group Nitrariaceae is around 96.5, 86.1, or 57.7 m.y. (Muellner et al. 2007) or (83.8-)63.1(-41.8) m.y. (Muellner-Riehl et al. 2016).

1. Nitraria L.

Plant shrubby, (with thorns); xylem parenchyma aliform-confluent; short shoots +; lamina (toothed or lobed at apex), stipules scarious [?not associated with all leaves], ?intrapetiolar; nectary +; A in triplets, opposite K; G [(6)], style broad at base, tapering; ovules 1/carpel, apotropous; fruit a 1-seeded drupe, mesocarp woody, pock-marked; endosperm slight, embryo chlorophyllous; n = 12 and polyploidy.

1/6. Europe to Asia, the Sahara, Australia.

Age. Crown-group Nitraria is some (51.5-)33.4(-17.6) m.y.o. (Muellner-Riehl et al. 2016).

[Peganum + Tetradiclis]: plant herbaceous; raphides +; stomata in longitudinal bands of small cells; leaves deeply lobed; style impressed; funicle long; testa mucilaginous.

Age. This node is (76.9-)53.4(-33.1) m.y.o. (Muellner-Riehl et al. 2016).

2. Peganum L.

Plant also subshrub; mycorrhizae 0; mucilaginous cells few; two adjacent leaves/node, or one leaf/node, (barely lobed), stipules tiny; flowers single, leaf opposed; K valvate; outer A in pairs opposite C; ovules many/carpel; megaspore mother cells several; fruit a loculicidal capsule or berry; testa weakly multiplicative, exo- and endotesta palisade, endotegmen ± fibrous; endosperm +; n = 12

1/6. Europe to Asia, east Mexico.

Synonymy: Peganaceae Takhtajan

3. Tetradiclis M. Bieberstein

Plant annual; leaves opposite or spiral, very fleshy, (entire), stipules small; inflorescence spike-like, cymose; flowers (3-)4-merous; A = and opposite K, filaments subulate; nectary 0; G [4], each divided into three parts, placentation basal, placentae long, style ± gynobasic, ± hollow; ovules to ca 6/carpel [4 ovules in central locellus, 1 each in lateral locelli]; fruit a loculicidal capsule [seeds in central locellus only released], endotegmen not fibrous; endosperm slight; n = 7.

1/1: Tetradiclis tenella. Eastern Mediterranean to Central Asia.

Synonymy: Tetradiclidaceae Takhtajan

Evolution: Divergence & Distribution. Given the phylogeny of the family, the distinctive flowers and fruits of Tetradiclis may be derived.

Ecology & Physiology. Members of this family are often to be found in salt deserts, salt (NaCl) concentration in Nitraria in particular reaching 14% (Sheahan 2011 for references).

Chemistry, Morphology, etc. Takhtajan (1997) says that stipules are absent in Tetradiclis; they are present, if small. There may be colleters here and elsewhere in the familu. In general, leaf morphology and nodal anatomy need attention.

Bachelier et al. (2011) discuss floral morphology in detail, discussing features like androecial morphology that have been interpreted in various ways in earlier literature. The androecium of Peganum is described as being obdiplostemonous by Eckert (1966); the 15 stamens may be in groups of three opposite the sepals, or there may be paired stamens opposite the petals (Ronse Decraene & Smets 1991a, 1992, 1996a; Ronse Decraene 1992; Ronse Decraene et al. 1996).

Most literature has these genera in Zygophyllaceae. For general information, see Weberling and Leenhouts (1965), Hussein et al. (2009) and Sheahan (2011: as Nitrariaceae and Tetradiclidaceae); for chemistry, see Hegnauer (1973, 1990), Sheahan and Cutler (1993) provide details of anatomy, Bachelier et al. (2011: all three genera) of floral morphology; for the embryology of Peganum, see Kapil and Ahluwalia (1963), and of Tetradiclis, see Kamelina (1994), for endosperm development, etc., see Batygina et al. (1985), and for seed anatomy, see Danilova (1996).

Phylogeny. Molecular data suggest the relationships [Nitraria [Tetradiclis + Peganum]] (Sheahan & Chase 1996; Savoilainen et al. 2000; Muellner et al. 2007; Muellner-Riehl et al. 2016; c.f. M. Sun et al. 2016 in part).

Relationships. Nitrariaceae and Zygophyllaceae agree in general appearance, wood anatomy, and perhaps also chemistry (Nag et al. 1995). Indeed, the two families used to be placed in an expanded Zygophyllaceae (Cronquist 1981), while Takhtajan (1997) included the genera in Nitrariaceae as three separate families in his Zygophyllales. Zygophyllales-Zygophyllaceae as circumscribed here are not remotely close to Nitrariaceae, and their similarities may be because both grow in dry and warm habitats; note that no endothelium has been recorded in members of Nitrariaceae (Kapil & Tiwari 1978: c.f. Zygophyllaceae s. str.).

Botanical Trivia. For some reason (?smell) even camels will not eat Peganum (Sheahan 2011).

[[Kirkiaceae [Anacardiaceae + Burseraceae]] Sapindaceae [Simaroubaceae, Rutaceae, Meliaceae]]]: wood silicified or with SiO2 grains; tension wood +; persistent floral apex in the center of the gynoecium [?this level]; ovules often 2/carpel, superposed, micropyle endostomal, inner integument elongated, S- or Z-shaped.

Age. Wikström et al. (2001) dated this node to (66-)62-57(-53) m.y. and Bell et al. (2010) suggested an age of around (75-)71(-70) m.y.; about 61.75 m.y. is the age in Naumann et al. (2013), ca 73.4 m.y. in Tank et al. (2015: Table S2), (107.8-)102(-96.1) m.y. in Muellner-Riehl et al. (2016), and (83.4-)81.5(-79.9) m.y. in Magallón et al. (2018).

Evolution: Divergence & Distribution. Diversification rates may have increased at this node in a nested fashion, (83.4-)81.5(-79.9) m.y.a and ca 4 m.y. before (Magallón et al. 2018).

Ecology & Physiology. All families in this clade (bar Kirkiaceae) include common trees at least 10 cm across in Amazonian forests and at least one of the 227 species that make up half the stems in Amazonian forests (for a total of 24 species; ter Steege et al. 2013).

[Kirkiaceae [Anacardiaceae + Burseraceae]]: cuticle waxes often 0; inflorescence thyrsoid [panicle of cymes]; flowers small [<1 cm across]; K ± connate, C protective in bud; (pollen exine striate); G adnate to central receptacular apex, synascidiate, stigma with uniseriate multicellular papillae, wet; fruit with 1 seed/carpel, endocarp well developed.

Age. The age of this node is somewhere around 93.6, 83.6 or 74.1 m.y. (Muellner et al. 2007), (127-)116(-105) m.y. (Weeks et al. 2014) or (102.9-)94.6(-85.6) m.y. (Muellner-Riehl et al. 2016).

Chemistry, Morphology, etc. Syllepsis is uncommon in this clade (Keller 1994). For some general information, see Bachelier and Endress (2008b).

KIRKIACEAE Takhtajan  - Back to Sapindales


Tree or shrub, often with tuberous roots; ellagic acid +, Si in wood?; nodes?; petiole with annular and medullary bundles; glandular hairs with multiseriate stalks; stomata ?anomocytic; leaves ± opposite to spiral, leaflet margins serrate; plants monoecious; inflorescence subdichasial, ultimate branches monochasial; flowers 4-merous; K basally connate, decussate, initially valvate, then open, C with adaxial-basal multicellus glandular hairs; staminate flowers: stamens = and opposite K; pollen syncolpate; nectary broad, well developed; pistillode +; carpellate flowers: staminodes +; G [4 (8)], ?orientation, extra "loculus" ± developed, receptacle apex convex, swollen, glandular, styluli closely adpressed, erect, finally spreading, apices postgenitally connate, stigmas ± punctiform; ovule usu. 1/carpel, micropyle bistomal, long [to 2 x length of nucellus], outer integument 2-3 cells across, cells much swollen in micropylar region, inner integument 3-4 cells across, parietal tissue ca 14 cells across; fruit a schizocarp, mericarps pendulous from columella; testa "very thin"; endosperm ?type, embryo curved; n = ?

1 [list]/8. Tropical and S. Africa, Madagascar (map: from Brummitt & Stannard 2007).

Chemistry, Morphology, etc. The family is chemically unexceptionable, lacking distinctive secondary metabolites found elsewhere in the order (Mulholland et al. 2003). The wood of Pleiokirkia is reported to smell like honey (Schatz 2001).

The lower order inflorescence branches have carpellate flowers, while flowers on higher order branches are staminate (Bachelier & Endress 2008b). The endocarp of the fruit has elongated and variously oriented sclereids (Fernando & Quinn 1992).

For some information on anatomy, see Jadin (1901), and on chemistry, see Nooteboom (1967); for the floral morphology of Kirkia, see Bachelier & Endress (2008a, esp. b). For general information, see Muellner (2011).

Previous Relationships. Kirkiaceae were previously placed in (Cronquist 1983, but with some doubt) or near (Takhtajan 1997) Simaroubaceae, but i.a. they lack quassinoids and limonoids.

[Anacardiaceae + Burseraceae]: biflavonoids; phloem with vertical intercellular secretory canals, surrounded by a light-coloured, sinuous, sclerenchymatous band [not easy to see]; silicification of wood prominent, (vessel elements with scalariform or reticulate perforations); glandular hairs with uniseriate stalks; (plants dioecious); C little longer than K; (nectary extrastaminal); tapetal cells bi- (uni-, poly-)nucleate; central receptacular apex ± exposed in the center of the flower; ovule pachychalazal; fruit a drupe, operculate, endocarp cells 2< layers, not oriented, lignified.

Age. Bell et al. (2010) suggested that the two families diverged (73-)64(-56) or (51-)50(-49) m.y.a., Tank et al. (2015: Table S1, S2) around 0/59.6 m.y., while Wikström et al. (2001) gave ages of (56-)51, 47(-42) m.y., Muellner-Riehl et al. (2016) ages of (97-)87.5(-78.5) m.y., and Weeks et al. (2014) ages of (121-)108(-95) m.y.; a mere 37.7 m.y. is the age in Naumann et al. (2013).

Fossils assignable to Burseraceae/Anacardiaceae are known from the early Eocene in England ca 50 m.y.a. (Collinson & Cleal 2001) and from the Deccan Traps of India ce 66 m.y.o. (Wheeler et al. 2017).

Evolution: Divergence & Distribution. Weeks et al. (2014) compared the path of evolution in Burseraceae and Anacardiaceae using clades of the same age and about the same size, and they noted the comparatively greater diversity of fruit morphologies and expanded climatic tolerances in the latter (see also Donoghue & Edwards 2014 for biome shifts).

Chemistry, Morphology, etc. Anacardiaceae like Pachycormus have thin, brown, flaking bark that looks quite like that of Burseraceae; the wood anatomy of the two is very similar (Daly et al. 2011).

The two families are palynologically indistinguishable. Bachelier and Endress (2009) discuss the floral morphology and anatomy of this clade in detail. The basic endocarp condition for [Anacardiaceae + Burseraceae] seems to be that of unoriented sclerified and often crystalliferous cells (Wannan & Quinn 1990), as found in Anacardiaceae-Spondiadoideae, and also in Buchanania, Campnosperma and Pentaspadon, included in Anacardioideae (e.g. Pell 2004: Campnosperma not sequenced), as well as in Burseraceae. An operculum may be derived twice in Anacardiaceae (Pell & Urbatsch 2001), but it is also found in fruits of Burseraceae and perhaps it, too, is plesiomorphic within the whole clade.

For chemistry, see Hegnauer (1964, 1989), for general developmental information, see Bachelier and Endress (2007a, especially 2008a, b).

ANACARDIACEAE R. Brown, nom. cons.  - Back to Sapindales


Trees or shrubs; exudate resinous, black or becoming blackish; crystals in xylem; wood often fluorescing; pith loose, shining; nodes usu. 3:3; petiole with annular wing bundles; colleters +; leaflets not articulated, margins toothed or not, base of petiole often swollen; breeding system various; flowers (3-)5(-7)-merous, protogynous; (stamens on nectary; nectary 0); (andro/gynophore +), styluli ± separate, terminal to gynobasic, (apex postgenitally connate), stigma capitate (lobed), dry; ovule 1/carpel, apotropous, ± anatropous, micropyle zig-zag (endostomal), funicle long, massive, ponticulus + [?kind of obturator]; seed often ± pachychalazal, vascular bundle in raphe amphicribral; endocarp complex, layered, innermost layer crystalliferous; endosperm oily (and starchy), usu. little-0 at maturity, embryo often curved, cotyledons large; n = 7-12, 14-16, 21; nuclear genome [1C] (440-)1819(-9144) Mb.

80 [list]/873 - two groups below. Tropical, also temperate (map: from Heywood 1976; modified by Barkley 1937; Fl. Austral. vol. 25. 1985; Wickens 1976; Meusel et al. 1978; Arbonnier 2002; Nie et al. 2009; Trop. Afr. Fl. Pl. Ecol. Distr. 6. 2011). Two groups below, but this will almost certainly have to change. [Photo - Flower, Fleshy fruit, Dry fruits.]

Age. Estimates of ages of crown-group Anacardiaceae are 72.7, 65.2, and 54.8 m.y. (Muellner et al. 2007), (128-)97(-83) m.y. (Weeks et al. 2014) and (87-)75(-63.5) m.y. (Muellner-Riehl et al. 2016).

1. Spondiadoideae Takhtajan

Exudate often gums; (leaves simple); A obdiplostemonous; G (?1 - Solenocarpus)[2-)4-5(-12)], (style 1); ovule ± apical, (2 ovules/carpel, one epitropous), hypostase +; exocarp thick), (endocarp crustose or cartilaginous), (operculum 0); exotestal cells (and hypodermis) sclereidal (not), tegmen ± 0, hypostase persistent, saddle-shaped; fruit usually 2< seeded.

20/138: Lannea (40). Tropical.

Synonymy: Spondiadaceae Martynov

2. Anacardioideae Takhtajan

(Vines; perennial herbs); exudate gums and resins, 5-deoxyflavonoids, also alkylcathechols and alkylresorcinols [phenols with unsaturated side chains - allergenic] +; (cork cortical); leaves (opposite), (simple); (flowers monosymmetric); K and/or C (0), K and C single trace [Toxicodendron]; (nectary - Mangifera/glandular hairs on staminal tube - Anacardium); A (1 [+ staminodes]), 5 [opposite sepals], 10 (many), (basally connate); G [3(-6)], (inferior), (highly) asymmetric, one carpel fertile (2 - Campnosperma), symplicate zone?, styluli gynobasic (style 1), stigma with multicellular papillae, (punctate); ovule apical to basal, (unitegmic, usu. apically bifid, 4-5 cells across), nucellus 5-20 cells across, (apex exposed - Pistacia), ovule (almost circinotropous), funicle with "knees" and other outgrowths, (ponticulus +); (chalazogamy +); fruit 1-seeded, often asymmetric, ± flattened, (K much accrescent, forming wings), (hypocarp developed); exocarp thin, epidermis lignified, endocarp with up to three layers of palisade lignified sclereids, internal to these a crystalliferous layer [= stratified], (not), (operculum 0); testa collapsed, tegmen undifferentiated/endotegmen lignified; (embryo chlorophyllous), (cotyledons folded - Mangifera).

60/735: Searsia (120), Semecarpus (72), Mangifera (68), Schinus (50), Ozoroa (40[+]). Largely tropical, also temperate.

Age. Woods of Anacardioxylon and Dracontomeloxylon from Cretaceous-Maastrichtian/Palaeocene-Danian deposits in the Deccan Traps ca 66 m.y.o. may belong to Anacardioideae (Wheeler et al. 2017).

Synonymy: Blepharocaryaceae Airy Shaw, Comocladiaceae Martynov, Julianaceae Hemsley, Lentiscaceae Horaninow, Pistaciaceae Martinov, Podoaceae Franchet, Rhoaceae Sadler, Schinaceae Rafinesque, Vernicaceae Schultz-Schultestein

Evolution: Divergence & Distribution. For many ages in the family, see Muellner-Riehl et al. (2016), but note the narrow circumscription of the Spondias clade there. For the early Caenozoic fossil history of what are now East Asian endemic Anacardiaceae, see Manchester et al. (2009) - Choerospondias, now growing from N.E. India eastwards, has been found in Lower Eocene deposits of the London Clay. Middle Eocene deposits from Germany include fossils of the distinctive fruits of the New World Anacardium, with their much-swollen pedicels; although the African Fegimanra, sister to Anacardium, also has swollen pedicels, they are clearly different (Manchester et al. 2007b; Pell et al. 2011; Collinson et al. 2012 for this and other fossil records). Distinctive fruits that have been identified as the Old World Dracontomelon are known from the Late Eocene of Panama in deposits some 40-37 m.y. old (Herrera et al. 2012), while wood identified as that of the Old World Mangifera is reported from Late Middle Eocene deposits ca 39 m.y.o. on the Pacific side of Peru (Woodcock et al. 2017).

Weeks et al. (2014) emphasized the diversity of fruit dispersal types in the family, the extent of long distance dispersal, and they also noted that the ability to live in cooler (i.e. with some freezing) conditions has evolved in the family.

Pell (2004) looked at the morphology of the whole family from a phylogenetic point of view.

Pollination Biology & Seed Dispersal. Pistacia and Amphipterygium (see Julianaceae below) are both wind pollinated, dioecious, and have reduced flowers. Chalazogamy s.l. (technically, perhaps, funiculogamy - Gonzalez 2016) is known from Schinopsis, Pistacia, Toxicodendron and Anacardium, the pollen tube moving into the ovule from the funicle via the ponticulus, an outgrowth of the funicle that bridges the gap between it and the chalaza (e.g. Martínez-Pallé & Herrero 1995; Bachelier & Endress 2009).

Disseminules of Anacardioideae are often modified in various ways for wind dispersal. The wings of the fruit may be formed from broad bracts that are adnate to it (Dobinea), the flattened peduncle of the inflorescence (Amphipterygium), much enlarged sepals (Parishia) or petals (Swintonia), or the fruits may be samaras (Loxopterygium), while in Cotinus hairs on the pedicels help in the wind dispersal of the small, nut-like fruits. The evolution of these fruit types seems to be correlated with the adoption of drier habitats (Pell & Mitchell 2007). In Anacardium the fleshy swollen pedicel is part of the attractive unit.

Plant-Animal Interactions. Anacardiaceae are well known for the sometimes extremely violent allergenic reactions their exudates cause; catechols, resorcinols and other types of phenolic compounds - often in a mixture, as in urushiol - are involved. About a quarter of the genera, all Anacardioideae, have such compounds (Aguilar-Ortigosa et al. 2003; Aguilar-Ortigosa & Sosa 2004).

Aphids (Fordinae) that form distinctive galls are closely associated with species of Pistacia (Inbar 2009), the sometimes massive, spherical galls produce terpenes that dissuade goats, at least, from eating them (Rostás et al. 2013); the aphids have diversified in part by occupying different sites on the one plant species. Fordinae aphids form galls on other Anacardiaceae, interestingly, crown-group Melaphidina (Fordinae) aphids, now on Rhus, have been dated to (79-)73.3(-68.3) m.y.a. (Ren et al. 2017). A gall-forming jumping psyllid plant louse, the hemipteran Calophya, is notably common on Schinus, and other psyllids occur on Anacardiaceae (Burckhardt & Basset 2000; Burckhardt 2005).

Economic Importance. Galls on Rhus producing industrial tannins and also being used for medicines (Wool 2004).

Chemistry, Morphology, etc. Schweingruber et al. (2011) emphasize the abundance of tension wood here. Branching in Anacardium may occur on the current flush.

Hardly surprisingly, wind-pollinated taxa often lack a nectariferous disc, also petals. Mangifera has one or two stamens borne inside the nectariferous disc; normally the stamens are outside the nectary. In Anacardium a single large stamen is on an oblique plane of symmetry; the other smaller stamens are also fertile (Bachelier & Endress 2009; Sokoloff et al. 2017 for discussion). More generally, the position of the carpel, when single, suggests that the flower is obliquely symmetric (Ronse de Craene 2010). Tölke et al. (2018) describe the diversity of nectaries in the family, noting the variation in its composition, both infraspecific and between closely related taxa. For infraspecific variation in style number - 1, 3 - see Gonzàlez and Vesprini (2010). In Anacardioideae the floral/receptacle apex is sometimes quite short (Bachelier & Endress 2009). In Lithraea, Schinopsis, Pistacia and Amphipterygium the ovules are unitegmic, etc. (Bachelier & Endress 2007b; Gonzalez 2016). Sometimes the second integument is represented by a small protrusion towards the apex of the otherwise single integument (e.g. Grundwag 1976; Robbertse et al. 1986). A ponticulus, a protrusion from the funicle, is common, and it appears to be a strongly developed portion of the outer integument that is otherwise adnate to the funicle; it also occurs in taxa with single integuments like Lithraea (Carmello-Guerreiro & Sartori Poli (2005). The fruits are drupes, and the wall, the stone in particular, are layered, some of the layers being produced from division of the endocarpial layer, however, fruits may not be drupes in the strict sense (Wannan & Quinn 1990; Gonzàlez & Vesprini 2010). The fruit often develops well before the seed, and the testa well before the embryo, so for some time the fruit, although quite laege, is almost empty (Copeland 1955, 1962). Ovule and pericarp variation in the family is considerable and needs to be put in a phylogenetic context.

For general information, see Ding Hou (1978), Pell et al. (2011) and Michell et al. (2006). For general chemistry, see Young (1976), for chemistry of Julianaceae, see Hegnauer (1966, 1989), for exudates, see Lambert et al. (2013), for wood anatomy, see Gupta and Agarwal (2008), for multiseriate ± capitate colleters, see Lacchia et al. (2016), for floral morphology, Wannan and Quinn (1991), for some embryology, see Grimm (1912), Copeland and Doyel (1940) and Copeland (1955), for fruit anatomy, see Pienaar and von Teichman (1998), for ovules, fruit and seed, see von Teichman and van Wyk (1988) and Carmello-Guerreiro and Sartori Poli (1999), and for seed anatomy, see von Teichman (1991, 1994, and references).

Phylogeny. Spondiadoideae-Spondiadeae and some Rhoeeae, including Pegia, Tapirira and Cyrtocarpa (see Aguilar-Ortigosa & Sosa 2004; Pell 2004) have been recovered as sister to the rest of the family. However, the situation is now rather complicated. Buchanania in some analyses is quite well supported as sister to other Anacardioideae (Aguilar-Ortigosa & Sosa 2004; Wannan 2006), consistent both with its chemistry, endocarp anatomy (it lacks a stratified endocarp), carpel number of 4-6, and different position of the fertile carpel, but its phylogenetic position is not fixed in other analyses (Pell & Mitchell 2007, c.f. abstract). Campnosperma, included in a study by Chayamarit (1997: sampling limited, relationships different from other studies, no support values), has an endocarp similar to that of Buchanania and the fruit is sometimes two-locular; it was not sequenced by Pell (2004). Pell et al. (2011) suggested that Spondiadoideae may be polyphyletic, and Weeks et al. (2014) found that Spondiadoideae were paraphyletic, Campnosperma being between the two parts, Buchanania ending up sister to one of those parts, and Pentaspadon was sister to the whole family - however, support was not strong. M. Sun et al. (2016) also did not recover a monophyletic Spondiadoideae, and although relationships within a portion of the subfamily were quite well resolved, that portion did not include genera like Pegia and Spondias itself... On the other hand, Z.-D. Chen et al. (2016) found Spondias, Dracontomelon, and Buchanania to be in the same clade and sister to the rest of the family (moderate support) while relationships in Muellner-Riehl et al. (2016) are [[Spondias + Dracontomelon] [[Buchanania + Lannea, etc.] [other anacards]]].

In the remainder of the family, there are four main clades, with [Dobinaea + Campylopetalum] sister to the whole lot and support for the scaffolding quite good (Weeks et al. 2014). In the old Anacardioideae (Pell & Urbatsch 2000, 2001) wind-dispersed taxa do not form a single group (Pell & Mitchell 2007, also Muellner-Riehl et al. 2016; c.f. Pell & Urbatsch 2001).

For relationships within Rhus, from which the allergenic Toxicodendron has been excluded, see Yi et al. (2007) and Andrés-Hernández et al. (2014). Silva-Luz et al. (2018: much morphology, previous sections, etc., do not hold) examined relationships in Schinus, closely related to Lithraea, Mauria and Euroschinus; [S. terebinthifolia + S. weinmanniifolia] form a clade sister to the rest of the genus.

Classification. See Mitchell et al. (2006) for a list of genera and Pell et al. (2011) for a classification, etc., the latter included 21 genera in their polyphyletic Spondiadoideae. Buchanania and Campnosperma are included in Anacardioideae above, and this robs the subfamily of much in the way of apomorphies, but obviously the current classification is decidedly temporary. For the limits of Rhus, which seem best narrowly drawn (i.e., restricted to ca 35 species), see Yi et al. (2007 and references), and for a sectional classification of Schinus, see Silva-Luz et al. (2018).

Previous Relationships. A number of anacardiaceous genera have highly reduced flowers and inflorescences, and in the past they have been segregated in separate families. These include Blepharocaryaceae, with their compact, involucrate inflorescences, Julianaceae, dioecious, the staminate flowers with extrorse anthers and carpellate flowers that lack a perianth but are surrounded by an involucre, and finally Podoaceae, with opposite leaves and carpellate flowers that also lack a perianth.

BURSERACEAE Kunth, nom. cons.  - Back to Sapindales

Trees or shrubs; bark flaky, light grey; exudate colorless to white, resinous, ellagic acid +; pith cells heterogeneous; nodes usu. 5:5; sclereids in stem; indumentum very various; epidermis with mucilage cells; leaflets (with pellucid dots), ?vernation, margins serrate, base often ± symmetrical, petiolules and petioles often pulvinate; dioecy common; K induplicate-valvate, ± connate, C valvate; ventral carpel bundles fused bundles of adjacent placentae, style usu. short; ovules 2/carpel; fruit septifragal, with columella, stone with valves, K deciduous; (exotesta with shortly radially elongate but unthickened cells), endotesta lignified, ± tracheidal; embryo reserves hemicellulosic; x = 13..

19[list]/755 (860) - four groups below. Tropical. [Photos - Leaf, Flower, Fruit.]

Age. De-Nova et al. (2012) dated crown-group Burseraceae to the early Palaeocene (69.7-)64.9(-60.3) m.y.a.; the estimate in Weeks et al. (2005: n.b. in text as the divergence between Anacardiaceae and Burseraceae) is (61.9-)60(-58.1) m.y.a., in Muellner-Riehl et al. (2016) it is (85.5-)75.2(-64.5) m.y., and in Weeks et al. (2014) the age is (106-)91(-78) m.y.a.; an age of 120 m.y. plus can be estimated from the discussion in Becerra (2005).

See Daly et al. (2011) for the fossil record of the family.

1. Beiselieae Thulin, Beier & Razafimandimbison

Plant deciduous; (vessel elements with scalariform perforation plates); leaf base much swollen, persistent, spinose, axillary bud on base of spine, [spine = petiole apex/rhachis base]; crpellate inflorescence racemose; G [9-12], symplicate zone short, ovary strongly 9-12-furrowed, style ± 0; ovules superposed; pericarp septifragal, columella massive, strongly ribbed, pyrenes free, apically radially winged, [between the ribs]; germinal epigeal, cotyledons entire.

1/1: Beiselia mexicana. Michoacan, Mexico (Map: in blue below).


[Garugeae [Bursereae + Protieae]]: (plant deciduous); oleoresins with mono- and bicyclic monoterpenes, triterpenes with ursane and oleanane components; (pith cells homogeneous); snail glands + [curled ± uniseriate glandular hairs]; (lamina margins entire); (K with single trace); A (apparently in a single whorl); (pollen psilate); G [(2-)3-5], (one carpel developing), symplicate zone well developed, receptacle enclosed by the gynoecium; ovules collateral, campylotropous, outer integument 3-5 cells across, inner integument 3-4 cells across, (integument 1, ca 5 cells across, apically bifid), parietal tissue 5-20< cells across, nucellar cap 1-30 cells across (?0); pyrenes usu. with pericarpial pseudo-aril, mesocarp quite frequently splits down loculicidal radius, or fruit indehiscent, stone often angled; vascular bundle in outer integument; cotyledons straight to variously folded, entire to palmately lobed.

18/754. Tropical, but esp. America and N.E. Africa (map: from Rzedowski 1978; Trop. Afr. Fl. Pl. Ecol. Distr. 6. 2011; D. C. Daly, pers. comm.).

Age. The crown-group age of this clade is some (60.2-)58(-55.8) m.y. (Weeks et al. 2005), (71.7-)62.9(-54.7) m.y. (Muellner-Riehl et al. 2016) or (66.5-)63.4, 54.2(-48.8) m.y. (Fine et al. 2014), but some estimates, at (116-)98, 92.7(-74.8) m.y., are older (Becerra et al. 2012), and yet older in Becerra (2003, 2005).

2. Garugeae Marchand

(Plant decidous); (cork cambium deeper - Santiria); petiole bundle with medullary strands; (leaflets not pulvinate), ("stipules" +, petiolar or cauline, laciniate to entire); dioecious, or flowers perfect; flowers often 3-merous, (hypanthium +); (C connate); (A connate - Canarium); (pollen striate); fruit often not dehiscent, (pyrenes winged); if germination hypogeal, often phanerocotylar; n = (22-24).

11/275: Canarium (120), Dacryodes (70). Tropical, esp. Old World.

Age. Crown-group Garugeae are estimated to be (54.5-)45.6(-36.9) m.y.o. (Federman et al. 2015) or (60.3-)52.5(-47) m.y. (Muellner-Riehl et al. 2016).

[Bursereae + Protieae]: petiole bundle with/without medullary strands.

Age. The age of this node can be dated to (66.8-)63.2, 48.6(-46) m.y. (Fine et al. 2014) or (67.2-)59.3(-51.8) m.y. (Muellner-Riehl et al. 2016).

3. Bursereae de Candolle

Plant usu. decidous; (petiole bundle arcuate - Commiphora); (plant thorny - Commiphora); plant (polygamo-)dioecious; pollen colpi short; (pyrenes tangentially winged), (pseudoaril +); n = (11, 12).

3/286: Commiphora (185), Bursera (110). Tropical America, Africa, 150 species Commiphora from Africa.

Age. Crown-group Bursereae may be around (58.3-)52.5(-47.4) m.y.o. Muellner-Riehl et al. 2016).

Synonymy: Balsameaceae Dumortier

4. Protieae Marchand

C induplicate-valvate, (connate); (stamens = and opposite sepals); (columella ribbed); pyrenes (free); n = (11).

3/140: Protium (130). Mostly neotropical, a few Madagascar and Malesia

Age. Crown-group Protieae can be dated to (43.2-)32.6, 25.7(-18) m.y.a. (Fine et al. 2014) or (40.2-)24.4(-11.7) m.y.a. (Muellner-Riehl et al. 2016).

Evolution: Divergence & Distribution. Dates for the split between Bursera and Commiphora vary from ca 120 to ca 60 m.y.a. - c.f. Becerra (2005) and Becerra et al. (2012); with the earlier age, distributions could be affected by continental drift; De-Nova et al. (2012) dated this split to (59.0-)54.7(-50.6) m.y.a., while it is estimated to be (58.3-)52.5(-47.4) m.y.o. by Muellner-Riehl et al. (2016: q.v. for ages of other clades). Weeks and Simpson (2007) suggested that divergence of Commiphora from the clade now represented by the E. Asian B. tonkinensis occurred some 53-42 m.y.a. in the Eocene; Commiphora itself did not diversify until 32.3-23.2 m.y.a., Neogene aridification of Africa occurring more or less at that time. Crown-group Commiphora may be (45.8-)36.6(-47.4) or (32.3-)27.8(-22.3) m.y.o. (Gostel et al. 2016 and Weeks & Simpson 2007 respectively), but Gostel et al. (2016) suggest that diversification began around 9.5 m.y. later, there being a very long branch above C. lasiodiscus. There are four quite separate clades of Commiphora on Madagascar, indeed, the Malagasy C. lasiodiscus is sister to the rest of the entire genus (Gostel et al. 2016). De-Nova et al. (2012) thought that crown group Bursera was ca 49.4. m.y.o., although diversification within the genus did not really get going until (23-)20 m.y.a, and Becerra et al. (2009) suggested that Bursera, speciose in the seasonally-dry, tropical forests of Mexico, had diversified most within about the last 25 m. years. De-Nova et al. (2012) estimated the age of most species of Bursera in these Mexican forests to be ca 7.5 m.y. - more or less as predicted for species in such forests (Pennington et al. 2009; Dick & Pennington 2011).

Weeks et al. (2005), Weeks and Simpson (2007: much detail) and Weeks et al. (2014) discuss the complex biogeographic relationships within Burseraceae, the latter emphasizing the paucity of biome shifts in the family and the importance of Miocene radiations in both Protieae and Bursereae. Federman et al. (2015) suggest that Canarium arrived in Madagascar drifting in ocean currents from the Southeast Asian region only about 8.4 m.y.a.; diversification in Madagascar, where the genus is now a prominent and speciose component of the rain forest, being dated to a mere 6 m.y.a. or so.

Ecology & Physiology. Burseraceae are a notable component of the Amazonian forests, and include a disproportionally large number of the common tree species with stems at least 10 cm across (ter Steege et al. 2013). Fine et al. (2014 and references) have studied the diversification of the Protieae, an important element of neotropical forests, in some detail; this began (43.2-)32.6, 25.7(-18) m.y.a., well before the uplift of the Andes. 35 species of Burseraceae, mostly Protium, in the western Amazon largely separated out ecologically, preferring either fertile clay, white sand, or terrace soils (Fine et al. 2005), and, as in groups like Eugenia, Inga, Piper and Psychotria differentiation of secondary metabolites may also be involved (see also below).

Bursereae, very largely made up of Bursera and Commiphora (see above for ages), are predominantly denizens of drier forests in the New World and Africa-Madagascar. Thus Becerra et al. (2009) noted that some 85% of the some 100 species of Bursera, often quite narrowly distributed, were to be found in seasonally-dry tropical forests in Mexico. De-Nova et al. (2012) suggested that there had been nine shifts to xerophytic scrublands there, seven to oak forests, and one to tropical forests; overall they discussed the habitat preferences of the genus in terms of niche conservatism.

Seed Dispersal. Burseraceae are one of the three most important food sources (the others are Lauraceae and Arecaceae) for specialized avian frugivores (Snow 1981). The fruits of Malagasy Canarium are quite large for the genus and are dispersed by large lemurs, most of which have recently been made extinct (Federman et al. 2016).

Plant-Animal Interactions. For possible coadaptive relationships between Burseraceae, especially Bursera itself, and herbivorous chrysomelid beetles (Blepharida) and how the latter deal with the toxic terpene-containing resins the plants contain, see Becerra (1997, 2003 and references) and Becerra et al. (2001: particularly interesting). The insect phylogeny matches host plant chemistry rather than its phylogeny (Becerra 1997; Pellmyr 2002). Becerra (2003) suggested that the two had been co-evolving for about 100 m.y., although other estimates for the age of the family (see above) suggest that this figure is very much an over-estimate. In plants that have a squirt defence toxic material in their tissues is under pressure and is ejected up to 2 m when the tissue is perforated by the insect; such species have a rather simple terpenoid-based exudate (Becerra et al. 2009). Locally, species of Bursera tend to be chemically more dissimilar than would be expected at random (Becerra 2007), perhaps promoting niche differentiation and local diversity (see also Endara et al. 2017). Overall chemical diversity in Bursera has increased with time/speciation, if dropping off when considered from a per-speciation-event point of view, and terpene variation seems to have become a matter of permuting combinations of chemicals in the local ecological context (Becerra et al. 2009).

Protieae with more diverse metabolites that affect herbivores, either positively or negatively, commit less to defence, and herbivore species richness is negatively correlated with metabolite richness (Salazar et al. 2018). Those metabolites that reduced herbivory were more conserved across the plant phylogeny, but there was no particular correlation between the metabolite composition of the plant and herbivore phylogeny, as might be expected for a system such as this where the herbivores are largely generalists (Salazar et al. 2018). Zapata and Fine (2013) found there were 3-5 copies of monoterpene synthase genes in Protium, one copy being very old, the other copies representing duplication events that occurred 50-70 m.y.a., before the diversification of Protieae (Fine et al. 2014). The evidence suggested that the products of these genes might have functions other than direct defence against herbivores, rather, they might attract predators and parasitoids of these herbivores (Zapata & Fine 2013).

Chemistry, Morphology, etc. Phytoliths are commonly produced by Burseraceae (Piperno 2006). Some Burseroideae have foliaceous stipule-like structures; these are usually interpreted as being the reduced basal pair of leaflets of a compound leaf.

A few genera (e.g. Garuga) have a well-developed hypanthium; the disc is rarely extrastaminal (Triomma). The odd carpel is drawn as being abaxial in 4-merous Amyris (Schnizlein 1843-1870, fam. 244). Srivastava (1968) thought that the ovules of Bursera delpechiana were straight, but they do not appear to be so from his illustration. The embryo sac is often very deeply seated in the ovule, with up to 85 cell layers between it and the nucellar epidermis; the shape of the embryo sac at maturity is very variable (Wiger 1935; see also Mauritzon 1935; Wiger 1936).

For additional general information, see Lam (1931, 1932), Leenhouts (1956), Forman et al. (1989: Beiselia) and in particular, Daly et al. (2011). For some chemistry, see Khalid (1983) and Lambert et al. (2013: exudates), for pollen morphology, see Harley and Daly (1995: Protieae) and Harley et al. (2005: considerable variation), for embryology, Narayana (1960 and references), and for pseudaril anatomy, see Ramos-Ordoñez et al. (2013).

Phylogeny. The quite recently-described Beiselia is sister to the rest of the family (Clarkson 2002; Weeks et al. 2005; Thulin et al. 2008; etc.). This has considerable implications for character evolution; Beiselia also has several probably autapomorphic features.

Thulin et al. (2008) found that Protieae, Bursereae, and Garugeae (the latter including Canarium, etc., i.e. Canarieae) all had strong support individually, but relationships between them were unclear; again, although Becerra et al. (2012) suggested the relationships [Canarieae [Protieae + Bursereae]], support for the position of Canarieae was not very strong (see also Federman et al. 2015; Muellner-Riehl et al. 2016: support quite strong).

In some studies Commiphora has been found embedded in Bursera, but with weak support (Weeks et al. 2005). Becerra et al. (2012) and De-Nova et al. (2012, but c.f. some analyses in the latter) found that a monophyletic Bursera was sister to Commiphora; what about B. tonkinensis? For relationships within Commiphora, with several well-supported clades that do not correspond to previous infrageneric groupings, see Gostel et al. (2016). Canarium was polyphyletic in the analyses of Federman et al. (2015), although the great bulk of the genus formed a single clade, while Muellner-Riehl et al. (2016) questioned the monophyly of Bursera, Canarium and Dacryodes. Fine et al. (2005, 2014) examined the phylogeny of Protium and its relatives, and Protium has turned out to be paraphyletic.

Classification. For the delimitation of Protium and a sectional classification for it, see Daly and Fine (2018).

[Sapindaceae [Simaroubaceae, Rutaceae, Meliaceae]] (if a clade): anthers with a pseudo-pit; nucellar cap +, tapetal cells multinucleate, nuclei fusing to form polyploid mass; outer integument over five cells across, obturator + [?level]; testa multiplicative.

Age. Wikström et al. (2001) dated this node to (61-)57, 55(-51) m.y.a., Magallón and Castillo (2009) suggested an age of around 70.7 m.y., Tank et al. (2015: Table S1, S2) an age of about 69 m.y., and Bell et al. (2010) an age of (70-)64(-57) or (54-)51(-49) m.y., while (106.5-)100.5(-94.4) m.y. is the age in Muellner-Riehl et al. (2016).

Chemistry, Morphology, etc. For an extensive tabulation of variation in anther, ovule and seed characters of this whole group, see Tobe (2011a).

SAPINDACEAE Jussieu, nom. cons.  - Back to Sapindales


Woody; quebrachitol [cyclitol], steroidal saponins, cyclopropane amino acids + [non-protein amino acids], ellagic acid 0 (+); cork also outer cortical; (petiole bundle with cortical or adaxial bundles); (epidermal cells mucilaginous), cuticle waxes 0 (platelets, rodlets); leaves spiral, odd pinnate, leaflets articulated [check basal pectinations], vernation also conduplicate-plicate, margins serrate, colleters common; inflorescence paniculate, the flowers often in clusters, imperfect; pedicels articulated; flowers 5-merous; C clawed; nectary extrastaminal; A 8, filaments hairy; (tapetal cells 1-3-nucleate); G [(2) 3(-6)], stigma various, dry or wet; ovules variously curved, sessile, campylotropous [?all], often apotropous, micropyle bistomal, outer integument thicker than the inner integument, parietal tissue 4-15 cells across (?0); fruit a loculicidal capsule; seed often pachychalazal; testa vascularized, exotesta palisade (not), unlignified, (mesotestal cell walls thickened and lignified; endotesta crystaliferous), tegmen (multiplicative), limited to radicular pocket, (exotegmen fibrous, lignified or not); endosperm starchy, embryo curved, radicle in pocket formed by seed coat.

144 [list]/1,900 - four subfamilies below, beginning of tribal classification. ± World-wide. (map: from Herzog 1936; Meusel et al. 1978; Fl. Austral. vol. 25. 1985). [Photo - Flower, Fruit, Fruit.]

Age. Wikström et al. (2001) date crown-group Sapindaceae to (43-)39, 36(-32) m.y., Bell et al. (2010) suggested an age (53-)42, 41(-30) m.y., and Muellner-Riehl et al. (2016) an age of (96.9-)87.2(-77.4) m.y. - alternatively, it is mid Cretaceous and (very approximately) 116-98 m.y.o. (Buerki et al. 2010c). Crown and stem ages of 36 and 55 m.y.a. respectively were suggested by Quirk et al. (2012).

Fossils ascribable to Sapindaceae are known from the later Cretaceous (Coetzee & Muller 1984).

1. Xanthoceratoideae Thorne & Reveal

Plant deciduous; phloem stratified; pericyclic sheath?; stomata anomocytic; buds perulate; flowers large [ca 2.5 cm across], polysymmetric; nectary with golden, horn-like glands alternating with C; pollen spiny; stigma capitate, 3-sulcate; ovules 6-8/carpel, outer integument 6-8 cells across, inner integument 3-4 cells across, hypostase +, obturator 0; fruit loculicidal; ?hilum, aril 0; mesotestal cell walls thickened, tegmen multiplicative, with inner layers thick-walled; germination epigeal; n = 15.

1/1: Xanthoceras sorbifolia. N. China.

Synonymy: Xanthocerataceae Buerki, Callmander & Lowry

[Hippocastanoideae [Dodonaeoideae + Sapindoideae]]: pericyclic sheath of phloem fibres and stone cells; flowers often strongly monosymmetric, (4-merous); C with appendages or not; (style hollow), (branched); ovules 2/carpel, apotropous, (obturator -); (megaspore mother cells several); (fruit septicidal), seed usually 1/carpel; cotyledons spiral or not; nuclear genome [1C] (367-)1197(-11149) Mb; germination hypogeal or epigeal.

Age. Wikström et al. (2001) dated this node to (36-)33, 29(-26) m.y., Bell et al. (2010) suggested that it was (46-)37, 35(-26) m.y.o. - alternatively, its age is mid Cretaceous between (very approximately) 116 and 98 m.y. (Buerki et al. 2010c), or somewhere in between, variously around 75.5, 65.8, or 58.8 m.y. (Muellner et al. 2007) or (91.7-)81.8(-71.8) m.y. (Muellner-Riehl et al. 2016).

2. Hippocastanoideae Dumortier

Plant deciduous; ("latex" +), cyanogenic glucosides 0; stomata actinocytic (anomocytic); buds perulate (perulae 0); leaves opposite, palmate or simple, with secondary veins ± palmate, vernation conduplicate-plicate, deciduous; protogynous; A (5-)6-8(-12); stigma dry; nucellar cap 8-10 cells across; aril 0; (embryo chlorophyllous); n = 20, nuclear genome size [1C] 0.6-1.18 pg.

5/143: Acer (126). North temperate, some tropical and then usually montane.

Age. Wikström et al. (2001) dated crown-group Hippocastanoideae to (29-)26, 20(-17) m.y.o., Bell et al. (2010) to (37-)25(-14) m.y.o. - or they may be 83±20.5 m.y. old (Buerki et al. 2013b) or (75.8-)66.4(-60) m.y. (Muellner-Riehl et al. 2016).

2a. Acereae (Durande) Dumortier

(Pericyclic sheath 0); cuticle wax crystalloids quite common [Acer]; leaves simple, (palmate), (odd pinnate); flowers polysymmetric; C not clawed, appendages 0; nectary inside A, annular; G [2(-3)]; outer integument 3-5 cells across; (style branches long, style ± 0); fruit a schizocarp, samaroid.

1/127: Acer. North Temperate, esp. China, Korea and Japan.

Age. The split between Acer and Dipteronia has been dated to (98-)78(-63.5) m.y.a. (Renner et al. 2007b).

The distinctive fruits of Dipteronia (= Acer s.l.) are known fossil from North America as long ago as late Palaeocene, 63-60 m.y.a., and quite commonly from there since, but it is not known fossil from Europe (McClain & Manchester 2001).

Synonymy: Aceraceae Jussieu

2b. Hippocastaneae (de Candolle) Dumortier

(Fructan sugars accumulated as isokestose oligosaccharides [inulins] - Aesculus); (vessel elements with scalariform perforation plates); leaves palmate; flowers monosymmetric, "large"; C with appendages; nectary on one side of flower; outer integument 8-10 cells across, inner integument 3-6 cells across, hypostase 0 [Handeliodendron]; fruit a loculicidal capsule; hilum large, (double arillode + - Handeliodendron); cotyledons incumbent [?level].

3/16: Aesculus (13). North temperate, S. to Colombia.

Synonymy: Aesculaceae Burnett, Hippocastanaceae A. Richard, Paviaceae Horaninow

[Dodonaeoideae + Sapindoideae]: leaves usu. evergreen, even-pinnate, (bicompound; simple), leaflets opposite or not, (margins entire), (rachis winged); seeds often with chalazal/integumentary arils and sarcotesta, (dormancy physical, water gap near hilum).

Age. The age of this node may be mid Cretaceous between (very approximately) 116-98 m.y.a. (Buerki et al. 2010c) or (88.2-)77.4(-66.5) m.y.a. (Muellner-Riehl et al. 2016).

3. Dodonaeoideae Burnett

Flowers with oblique plant of symmetry [?distribution]; K. initiation spiral, C appendages uncommon; disc (semi)annular; ovule (1/carpel, pendulous), outer integument 8-10 cells across, inner integument 3-4 cells across.

22/140. Pantropical-warm temperate.

Age. Crown-group Dodonaeoideae are 80.5±12.75 m.y.o. (Buerki et al. 2013b) or (71-)53.2(-36) m.y.o. (Muellner-Riehl et al. 2016).

3a. Dodonaeaeae de Candolle

Cork pericyclic [Dodonaea]; stomata cyclocytic [Dodonaea]; flowers obliquely symmetrical, polysymmetric (monosymmetric); C (0 - esp. Dodonaea); A (many - esp. Distichostemon); (pollen in calymmate tetrads - Magonia); ovules (8/carpel - Magonia), outer integument (3-4 - Magonia)/8-10 cells across, inner integument 3-4 cells across, parietal tissue 8≤ cells across, chalaza pointed [Magonia]; fruit loculicidal, (septicidal-schizocarp); seed (arillate; sarcotestal; winged); n = 10, 12, 14-16.

14/126: Dodonaea (70), Harpullia (26). Pantropical-warm temperate, esp. Australia, to W. Pacific.

Synonymy: Dodonaeaceae Small

3b. Doratoxyleae Radlkofer

Flowers polysymmetric, (K monosymmetric); A 5-8; fruit indehiscent, drupe or berry; aril/sarcotesta 0; n = 16.

8/14. Pantropical, mostly New World and Africa-Madagascar (Ganophyllum to Australia).

4. Sapindoideae Burnett

(Vessel elements with scalariform perforation plates); stomata various; C (0, 5+), ± complex appendages +; A (4[Glenniea]-many); ovule (epitropous), outer integument 4-12 cells across, inner integument 2-7 cells across; fruit also a samara (indehiscent); n = 14-16, chromosomes 0.62-4.36 µm long.

111/1,340: Guioa (65), Cupaniopsis (60), Talisia (42), Cupania (50), Matayba (50). Pantropical.

Age. The crown-group age of this clade is estimated to be (75.6-)63.7(-51) m.y. (Muellner-Riehl et al. 2016: Koelreuteria sister).

For Late Cretaceous/Early Palaeocene fossil woods (India, Deccan Traps) and seeds (Europe) that may well be Sapindoideae, see Wheeler et al. (2017).

4a. Koelreuterieae Radlkofer

Flowers with oblique symmetry; K spirally initiated; C 4 (+ 1 reduced); androgynophore +, 1 A oustide nectary.

Synonymy: Koelreuteriaceae J. Agardh

The Rest: ovule 1/carpel.

4b. Paullinieae de Candolle

Shrubs, trees, vines, often lianes climbing by branch tendrils; (secondary thickening anomalous [stem lobed/phloem wedges/etc.]); (stem endodermis +); (latex +, laticifers articulated, non-anastomosing); terminal leaflet well-developed, (stipules or petiolar pseudostipules +, minute to large); inflorescence thyrses with lateral cincinni; C 4; (pollen oblate, triporate - Serjania, etc.); (antipodal cells persistent - Cardiospermum), obturator long; fruit a schizocarp, samaroid, or ± septicidal capsule; (sarcotesta +), (aril +); (amyloid [xyloglucans] in seed - Cardiospermum); n = 10-12.

12/720: Serjania (230), Paullinia (195), Allophylus (1-255). Mostly New World tropics, Allophylus also Old World.

Synonymy: Allophylaceae Martynov

4c. Melicocceae Blume

Flowers polysymmetric; (C appendages 0); fruit indehiscent, ± dry; sarcotesta +; n = 16.

2/62: Talisia (52). New World tropics.

lychee - K. whorled.

Evolution: Divergence & Distribution. Cupaniopsis-type pollen is widespread in the fossil record, including from several sites in Africa, although Sapindaceae with such pollen are no longer to be found there (Coetzee & Muller 1984). Wehrwolfea, with striate pollen, a floral formula of K 4 C 4 A 10(?+) G [3-4], and placed in Sapindaceae, is known from the middle Eocene of western Canada (Erwin & Stockey 1990), however, Acer and Dipteronia are older (see above). For the early Caenozoic fossil history of what are now East Asian endemics, see Manchester et al. (2009). Muellner-Riehl et al. (2016) give dates for more clades.

Buerki et al. (2010c, 2013b) outline the biogeography of the family, in which much dispersal is involved. The subfamilies of Sapindaceae spread in the mid Cretaceous 116-98 m.y., initially from Laurasia, with South East Asia remaining an important area in the evolution of the family (Buerki et al. 2010c, 2013b). Sapindaceae are not a simple example of a temperate radiation embedded in an otherwise tropical group (c.f. Judd et al. 1994). Xanthoceratoideae and Hippocastanoideae are both predominantly temperate, although the rest of the family is largely tropical, and the samaras of Acereae (see e.g. Harris et al. 2017b) evolved independantly from those in the rest of the family.

For diversification in Acereae, see Renner et al. (2007b) and Y. Feng et al. (2018), although Dipteronia has only two species, these may have separated around 58.2-46.5 m.y.a., before diversification in the far larger Acer began. Sapindaceae seem to have moved into New Caledonia ca 10 times or more, or there is yet a more complex pattern of movement to and from the island; the relatives of the Mauritian Cossinia pinnata (Dodonaeoideae) grow in the New Caledonian area (Buerki et al. 2012a). The very widespread Dodonaea viscosa has achieved its range within the last two m.y. (Harrington & Gadek 2009).

Harris et al. (2009) found that Aesculus parryi, from Baja California, diverged ca 49 m.y.a. and A. californica, rather more widespread, diverged ca 61.2 m.y.a., in both cases the sister clades being east North American.

Although most Sapindoideae have but a single ovule per carpel, this is not an apomorphy for the subfamily, basal taxa like Ugnandia and Koelreuteria having two ovules per carpel. There are usually 1-3 seeds per fruit, and the size of animal-dispersed fruits depends on the size of the frugivores in the area, as was shown by Brodie (2017) looking at seed and frugivore size across Malesia - Sapindaceae from Sulawesi and Moluccas, with smaller frugivores, had significantly smaller fruits than Sapinaceae from New Guinea or the region of the Sunda shelf - obviously this is not likely to be unique to Sapinaceae (see also Arecaceae).

Ecology & Physiology. Sapindaceae, along with Bignoniaceae and Fabaceae, are the major components of the liane/vine vegetation of the Neotropics (e.g. Gentry 1991). The largely neotropical Paullinieae (Sapindoideae), with 8 genera of climbers, both vines and lianes, including Serjania and Paullinia, contain one third of the species in the family, including around 470 species that are climbers. As might be expected, many of these climbers have stems with anomalous secondary thickening.

Pollination Biology and Seed Dispersal. Species of Acer like A. rubrum are known for having very labile breeding systems. Renner et al. (2007b) studied breeding systems in the genus and suggested that dioecy had evolved several times, and that the sex of the flower may be determined by environmental cues.

A number of Sapindaceae have winged fruits like those of maples (Acer), although constructed in a variety of ways. Lentink et al. (2009) studied the aerodynamics of the fruits of three species of maple, and showed that they developed a vortex at the leading edge of the rotating wing that generated lift, so allowing the descending fruit to travel greater distances (Lentink et al. 2009).

Plant-Animal Interactions. Hemipteran rhopalid seed predators have recently switched from native to introduced Sapindaceae in both Australia and Florida (Forbes et al. 2017 and literature). Work by Cenzer (2017) paints a complex picture in Florida, at least, where maladaptive plasticity in hybrid red-shouldered soapberry bugs (Jadera haematoloma) masks differences developed between populations of those bugs feeding on the different sapindaceous species (native Cardiospermum, introduced Koelreuteria). Interestingly, Western boxelder bugs, Boisea trivittata, which fancy the seeds of Acer negundo (and other species of the genus, also Fraxinus) respond to infrared cues in the laboratory (Takács et al. 2017). All these bugs are soapberry bugs, Serinethinae, a group of about 63 rhopalids that specialize on Sapindaceae, especially Sapindoideae but not Dodonaeoideae and Xanthoceratoideae (Carroll & Loye 2012 for insect-host associations).

Vegetative Variation. Stem tendrils of Paullineae grow laterally from the axil of the leaf that subtends them, and there is a basal bud on the side opposite to the direction in which the tendril is growing. Tendrils often develop on inflorescences, and they appear to be modified branches that grow from the axils of prophylls. Cauline secondary thickening is often anomalous: There are unusual patterns of cambial origin, some species developing several independent vascular cylinders, and cambial activity is also variable, that of some species resulting in xylem outside and cambium inside (Tamaio & Angyalossy 2009; Angyalossy et al. 2015 and other references in Schnitzer et al. 2015; Lopes et al. 2017; Neto et al. 2018; Pellissari et al. 2018). Vessel dimorphism - very wide and very narrow vessels - is common, perhaps ensuring rapid movement of water yet at the same time affording some protection against embolisms (Bastos et al. 2016 and references). The root anatomy of these vines/lianes shows similar dimorphism in vessel diameter but usually not the cambial variation of the above-ground parts of the same plant (Bastos et al. 2016).

Genes & Genomes. It has been suggested that the base chromosome number for Sapindaceae is x = 7 (Ferrucci 1989). For chromosome numbers, see also Lombello and Forni-Martens (1998), for chromosome size, see Ferrucci (1989), and for genome size, see Coulleri et al. (2014: not much correlation with anything).

Chemistry, Morphology, etc. A cauline endodermis is reported from some climbing Paullinieae, being recognised as such by its position and large size of its cells and the starch grains they contain rather than by any distinctive pattern of wall thickening (Neto et al. 2018). Aesculus has large bud scales, Billia has naked buds, but both branch from the previous flush. "Ordinary-looking" stipules are known only from climbing species like Serjania, but leaflets looking like stipules (pseudostipules) occur elsewhere in the family. For laticifers in Paullinieae, which can be clustered, see Neto et al. (2017).

Radlkofer (1892-1900) shows Serjania as having strongly obliquely symmetric flowers, with the odd gynoecial member abaxial on the plane of symmetry. The abaxial corolla member is absent, but the stamens are abaxial, the two adaxial(?)-lateral members being missing. Flowers of Eurycorymbus change from being obliquely symmetric to polysymmetric during the course of development (Cao et al. 2017). In Acer, the samaras are shown as being oblique by Schnizlein (1843-1870), while Ronse de Craene (2010) depicts gynoecial orientation as varying within an inflorescence. The petals of Sapindaceae are often rather complex and have a similarly complex set of terms used to describe them; see "appendages" above.

There is extensive variation in pollen morphology within the family, and when the phylogeny settles down some/much of this will probably be found to vary between tribes (see J. Muller & Leenhouts 1976; Acevedo-Rodríguez et al. 2011). Similarly, I have not atempted to integrate variation in stigma/style morphology with phylogeny. Brizicky (1963) reported that the ovules may be epitropous (see also Tanaka et al. 2016); those of Koelreuteria and other taxa are both epitropous (the lower ovule) and apotropous (the upper ovule) in the same loculus (Mauritzon 1936; Danilova 1996). Corner (1976) noted that the outer integument of Nephelium lappaceum was slightly thinner than the inner integument, and that there was a definite funicle in Aesculus, at least after fertilization (see also). Tanaka et al. (2016) described how the ovule became campylotropous as an invagination developed in the raphal region; this also produced the radicular pocket characteristic of sapindaceous seeds.

The fruit can look like a follicle when only one carpel develops; dehiscence is, however, down the abaxial side and rudiments of other carpels are sometimes visible. In many Sapindaceae (and also Anacardiaceae) the pericarp grows much faster than the seed, so what seem to be almost mature fruits can contain seeds that are still very small. Turner et al. (2009) document a water gap near the hilum in the hard seeds of Dodonaea.

For general accounts, see Radlkofer (1890, 1933 to 1934, etc.) and Acevedo-Rodríguez et al. (2011), for chemistry, see Hegnauer (1964, 1966, 1973, 1989, 1990, also under Aceraceae and Hippocastanaceae), for wood anatomy, see Klaassen (1999) and Agarwal et al. (2005), for epidermal features, see Cao and Xia (2008) and Pole (2010), for floral morphology of Litchi and Dimocarpus, see S. X. Xu (1990, 1991), of Koelreuteria, see Ronse Decraene et al. (2000b) and Cao et al. (2018), of Delavaya, Cao & Xia (2009), of Handeliodendron, Cao et al. (2008), of Acer, etc., Leins and Erbar (2010), and for that of Xanthoceras, Zhou and Liu (2012), for nectaries, which may have three vascular traces, see Solis and Ferucci (2009) and Zini et al. (2014a), for endothecial thickenings, see Manning and Stirton (1994), for style morphology, see Lersten (2004), for embryology, Nair and Joseph (1960), Tobe and Peng (1990) and González et al. (2017), for fruits of Paullineae, see Weckerle and Rutishauser (2005), and for seeds, see Guérin (1901), van der Pijl (1955), Turner et al. (2009: germination) and Gama-Arachchige et al. (2013: esp. water gap).

Phylogeny. Buerki et al. (2009, 2010b: 81 and 104 genera respectively) carried out extensive phylogenetic studies on the family. Preliminary studies suggested that Xanthoceras, with 5-merous, polysymmetric flowers, eight stamens, ovules arranged in parallel (see also Magonia), and golden nectaries borne outside the stamens and opposite the sepals, might be sister to all other Sapindaceae, general relationships being [Xanthoceras [[erstwhile Aceraceae + Hippocastanaceae] [the remainder of the family]]] (see Klaassen 1999; Savolainen et al. 2000a; Soltis et al. 2007a). Subsequent two-gene studies (Harrington et al. 2005, 2009: information about secondary structure of ribosomal DNA, extensive sampling in Dodonaeoideae but no Sapindoideae) largely confirmed these results. Harrington et al. (2005) found that Xanthoceras was not sister to the rest of the family in single gene analyses, being somewhat embedded, but without strong support; it was only in the joint analysis that it was sister and with 70% bootstrap and ³95% posterior probability support (see also Buerki et al. 2010a, 2010b, support still very low; M. Sun et al. 2016; Muellner-Riehl et al. 2016). Early morphological analyses (Judd et al. 1994) suggested a rather different set of relationships.

Dodonaeoideae. Relationships within Dodonaea are discussed by Harrington and Gadek (2010). Hippocastanoideae. For the phylogeny of Acer, see J. Li et al. (2006), Renner et al. (2007b), Li (2011) and Harris et al. (2017b). Evidence that Dipteronia, with pinnate leaves and cyclic samaras, is derived from Acer, with more regulation-type samaras and usually palmate/ly lobed leaves, is ambiguous. A recent transcriptome analysis suggested that the two were sister taxa, and although in Harris et al. (2017b) A. japonica was sister to [other Acer + Dipteronia], that species was well embedded within Acer in Renner et al. (2007b: one analysis, ?incomplete sequence) and in Li (2011). Harris et al. (2009) examined the phylogeny of Aesculus. Sapindoideae. Delevaya and Koelreuteria are successively sister to the rest of Sapindoideae (Buerki et al. 2013b), M. Sun et al. (2016) found Ungnadia to be sister to the rest of the subfamily, and Koelreuteria was in this position in the study by Muellner-Riehl et al. (2016: the two other genera not included). Relationships within Dodonaea are discussed by Harrington and Gadek (2010). For relationships around Cupania, see Buerki et al. (2012a), while Acevedo-Rodríguez et al. (2017) looked at relationships around Paullinieae (inc. in Paulliniodae).

Classification. The phenetically distinctive Aceraceae and Hippocastanaceae are here included in Sapindaceae, with which they have much in common; Buerki et al. (2010b) prefered to recognize them (and Xanthoceras, as Xanthoceraceae [sic]) as families; for subfamilies, see Buerki et al. (2009). There is extensive polyphyly of the classically-recognized tribes (Buerki et al. 2010b), while generic limits in the Cupania group (Sapindoideae) are unclear (Buerki et al. 2012a).

Previous Relationships. Sapindaceae are chemically similar in some respects to Fabaceae, e.g. both have non-protein amino acids (for a summary, see Fowden et al. 1979), and both have compound leaves, their seeds may be arillate, etc., but they are not closely related.

[Rutaceae [Simaroubaceae + Meliaceae]: alkaloids, limonoids/protolimonoids +, pentanortriterpenes +; cuticle waxes 0; (leaves trifoliate), (simple); inflorescence branches cymose.

Age. Wikström et al. (2001) dated this node to (51-)47, 45(-41) m.y.a., while an age of ca 53.6 m.y. was suggested by Tank et al. (2015: Table S2) - note the topology in these two - and an age of (100.3-)93.5(-86.6) m.y. by Muellner-Riehl et al. 2016).

Chemistry, Morphology, etc. The triterpenoid limonoids (see Rutaceae), meliacins (Meliaceae), cneorids (Rutaceae), and quassinoids (Simaroubaceae) are biosynthetically related (e.g. Connolly et al. 1970; Evans & Taylor 1983; papers in Waterman & Grundon 1983; Waterman 1983, 1993) and often have a bitter taste. For additional details of the distribution of limonoids and protolimonoids, see Yin et al. (2009), and for trans-octadecanoic acids in seed oils, see Stuhlfauth et al. (1985).

For some information on carpel development, see van Heel (1983).

RUTACEAE Jussieu, nom. cons.  - Back to Sapindales

Furanocoumarins, distinctive limonoids, tetranortriterpenes, flavones +; (vessel elements with scalariform perforation plates); libriform fibres +; wood often fluorescing; (nodes 1:1); (cuticle waxes platelets, rodlets, etc.); stomata various; schizogenous cavities +; leaves (simple), leaflets usu. prominently punctate, (subopposite), usu. articulated, vernation also flat, margins entire to crenate (serrate); flowers often perfect; (3-)5-merous; K (2-4), connate or free, C often valvate?, (connate); A filaments ± flattened; (gynophore +); G variously connate to almost free, style impressed to ± gynobasic, (stylar canals as many as carpels), (apex postgenitally connate), discoid or capitate, dry or wet; ovules 1-2/carpel, (apical), micropyle also bistomal, zig-zag, nucellar cap 2-6(-18) cells across; chalazal embryo sac haustorium +; seed with chalazal aperture in the sclerotesta at base or raphe [?Aurantioideae]; exotegmen tracheidal + (0); (endosperm +), (embryo curved); n = (7-)9(-11+).

161 [list]/2,085 - four groups below. Largely tropical.

Age. Bell et al. (2010) suggested that this node was (51-)40(-29) m.y.o.; however, other dates are (87-)82(-74) m.y.a. (Appelhans et al. 2012a), around 93.3, 82.1, or 72.9 m.y. (Muellner et al. 2007, see also 2006), (93.4-)84.6(-75.9) (Muellner-Riehl et al. 2016), (72.7-)62.7(-53.3) m.y.a. (Pfeil & Crisp 2008), or (43-)39, 37(-33) m.y.a. (Wikström et al. 2001), so there is quite a range with which to work.

1. Cneoroideae Webb


Woody; pyranochromones, (diterpenoid cneorubin; quassinoids; alkaloids [Dictyoloma] +; (schizogenous cavities 0), oil cells commonly solitary; petiole bundle more or less cylindrical, of two opposed plates (arcuate - Bottegoa); stomata anomocytic to cyclocytic; solitary oil cells + (0), (schizogenous cavities 0); (leaves bicompound), (stipules and stipular thorns +); C valvate; A 4-5, (8-10 - Harrisonia), filaments ± flattened, with basal appendages; pollen reticulate, (tricellular - Cneorum); G (1-)3(-5), style with canals [Harrisonia]; ovules (-5/carpel), also apotropous, (becoming) campylotropous, micropyle endo-/bistomal, outer integument ca 2 cells across, inner integument 3-4 cells across, parietal tissue 4-5 cells across, hypostase +/0, obturator +; fruit a loculicidal capsule, or the carpels opening adaxially and separating laterally and from columella, a winged drupe, or follicle; [endo]testa multiplicative, exotestal cells large, outer walls thickened, endotestal cells small, thick-walled, with crystals, (oil cells +), exotegmen fibrous (not); n = ?

7/35: Spathelia (20). The tropics, not the Indian subcontinent, also N. Australia and the Mediterranean (Map: from Appelhans et al. 2012a; Australia's Virtual Herbarium xii.2012; Fl. Austral. vol. 26. 2013).

Age. Crown Cneoroideae have been dated to (78-)74(-58) m.y.a. (Appelhans et al. 2012a) or (84.6-)67.2(-46.9) m.y.a. (Muellner-Riehl et al. 2016).

Synonymy: Cneoraceae Vest, Ptaeroxylaceae J.-F. Leroy, Spatheliaceae J. Agardh


[Amyridoideae [Rutoideae + Aurantioideae]]: dihydrocinnamic acid derivates, carboline alkaloids and canthinones [with tryptophane nucleus - ?level]; (A obdiplostemonous); pollen (exine striate); (ovules hemitropous, campylotropous), (apotropous), outer integument 3-10 cells across, inner integument 2-4(-6) cells across, parietal tissue (3-)5-12(-16) cells across; archesporium often multicellular; (endocarp area persisting at adaxial base of seed); (exotesta mucilaginous); nuclear genome [1C] (196-)1278(-8509) Mb. (Map: from Meusel et al. 1978; Brummitt 2007; Groppo et al. 2012).

Age. The age of this node may be (56.8-)47.6(-36.4) m.y. (Pfeil & Crisp 2008), (73-)70(-62) m.y. (Appelhans et al. 2012a), (90-)74(-58) m.y. (Salvo et al. 2010: q.v. for more dates) or (83.2-)74.5(-66.1) m.y. (Muellner-Riehl et al. 2016).

2. Amyridoideae Arnott

Woody; quinolone and acridone [derived from anthranilic acid], furo-pyranoquinoline and -pyranoquinoline, and benzylisoquinoline alkaloids, (limonoids 0); (distinctive tracheal veinlet endings); (foliar sclereids +); oil cells also commonly solitary; (colleters +0); (leaves opposite), (stipules +, intrapetiolar/hooded sheath - Metrodorea); flowers (vertically or obliquely monosymmetric), (4 merous), (T + - Zanthoxylum), C (connate); A (connate), (4), (2, with basal anther appendages, + 3 staminodes - Angostura alliance),; ([andro]gynophore +); (G opposite sepals - Zanthoxylum), (styluli terminal), (connate only at apex); (obturator +); carpels separating in fruit, (seeds winged), (forcibly expelled with endocarp); exotesta often mucilaginous, irregularly palisade, lignified or not, or fibrous and lignified, (mesotesta sclerotic), (sarcoexotesta [spongy], lignified endotesta - Melicope, etc.), (mesotesta fibrous - Phellodendron), meso-/endotesta thickened [Zanthoxylum], exotegmen with crossed lignification bars, or not [Skimmia], (meso- and endotegmen tracheidal), (nucellar polyembryony +); (endosperm copious, embryo short to long - Zanthoxylum); n = (7-)8-9(-11).

113/1755: Melicope (300), Zanthoxylum (225), Agathosma (150 +), Boronia (150), Vepris (80), Zieria (60), Acronychia (48), Conchocarpus (48), Amyris (40). Pantropical, some (warm) Temperate. [Photo - Flower, Flower, Fruit.]

Age. Crown-group Amyridoideae are (79-)70.7(-62.8) m.y.o. (Muellner-Riehl et al. 2016).

Synonymy: Boroniaceae J. Agardh, Dictamnaceae Vest, Diosmaceae Bartling, Diplolaenaceae J. Agardh, Flindersiaceae Airy Shaw, Fraxinellaceae Nees & Martius, Jamboliferaceae Martynov, Pilocarpaceae J. Agardh, Pteleaceae Kunth, Zanthoxylaceae Martinov

[Rutoideae + Aurantioideae]: (leaves simple, trifoliolate); C imbricate, clawed.

Age. The age for this node is estimated to be some (75.3-)62.9(-50) m.y. (Muellner-Riehl et al. 2016).

3. Rutoideae Arnott

Perennial herbs to shrubs; acridone alkaloids reduced at C-1 and C-3, napthalene coumarins +; limonoids 0; C (valvate - Chloroxylum), (fringed - Ruta); (G [2-5]), postgenitally united, (gynophore +); ovules 4-8(-12)/carpel; fruit loculicidal, often ventricidal, capsule, (septicidal, with mericarps); (seeds reniform), (winged); endosperm usu. ± copious, embryo straight to curved; n = (9), 10.

5/20. North (warm) temperate to tropical, some southern Africa, not the Antipodes or South America.

Age. Crown-group Rutoideae are estimated to be some (51.9-)40.4(-29.5) m.y.o. (Muellner-Riehl et al. 2016: Claus. Gly.).

4. Aurantioideae Eaton

Shrubs to trees; methylcarbazole alkaloids, distinctive flavonoids by polymethoxylation; (thorns +); leaf (rhachis winged), (leaflets alternate); C (valvate - Micromelum), (A many); G 1, [2-5(-20)], (placentation parietal); ovules 1-many/carpel, (unitegmic, nucellus apex exposed, integument ca 5 cells across - Glycosmis), hypostase, obturator +, with hairs; fruit a ± dry berry with mucilaginous pulp directly from endocarp or multicellular hairs, (ventricidal capsule); (seed pachychalazal - Glycosmis), exotesta in part mucilaginous (not), fibrous, fibres laterally compressed, (with [multicellular] hairs), inner walls lignified, often fibrous, (testa sclereidal-fibrous - Atalanta), (ecto-, meso- and) endotesta with crystal-containing cells, exotegmen fibrous; (multicellular chalazal haustorium/narrowing), (nucellar polyembryony +), (embryo curved), cotyledons thick, not folded (not Micromelum); n/x = 9.

28/273: Haplophyllum (66), Glycosmis (50), Citrus (30). Mediterranean to Indo-Malesia and the Pacific, also Africa.

Age. The age of crown-group Aurantioideae is estimated at (28.2-)19.8(-12.1) m.y.a. (Pfeil & Crisp 2008), ca 30 m.y.a. (Muellner et al. 2007) or (52-)40.5(-29.5) m.y. (Muellner-Riehl et al. 2016).

Synonymy: Amyridaceae Kunth, Aurantiaceae Jussieu, Citraceae Roussel

Evolution: Divergence & Distribution. For the early Caenozoic fossil history of what are now East Asian endemic Rutaceae, see Manchester et al. (2009); Gregor (1989) discussed Caenozoic fossil seeds. For other dates of diversification within Rutaceae, especially Aurantieae, see Pfeil and Crisp (2008; c.f. in part Muellner et al. 2007) and Appelhans et al. (2018a).

Rutaceae are relatively young, and distributions are unlikely to be much affected by continental drift (but c.f. Kubitzki et al. 2011; Hartley 2001a, 2001b; Ladiges & Cantrill 2007). Appelhans et al. (2018a) suggest that the family may be Eurasian in origin. Citrus probably moved from west to east Malesia and Australia some time in the Miocene/Pliocene (Schwartz et al. 2015).

Ca 275 species of Diosmeae are restricted to South Africa, very largely to the Cape Floristic Region (Linder 2003; Trinder-Smith et al. 2007). About 1/4 (400< spp.) of the species in the family are to be found in Australia (see Bayly et al. 2013b for a phylogeny), where most have narrow distributions; movement seems to have been from rainforest habitats to more sclerophyllous/xerophytic vegetation, but there were only four or five of these shifts (Bayly et al. 2013b). The crown-group age of Zanthoxylum on Hawaii (hybridization may have been involved in their origin) is around (17.5-)11.8(-6.9) m.y. (Appelhans et al. 2018a). Melicope and its relatives have radiated extensively across the Indian and Pacific Oceans, where they are to be found from Madagascar to the Austral islands (Appelhans et al. 2018b). There has been a major radiation of Melicope on Hawaii of some 55 species the beginning of which predates the ages of the main islands, and from Hawaii there seems to have been dispersal to the Marquesas Islands; the source area for the Hawaiian plants (and for the whole group) is likely to be in the general Australia-New Guinean region, although Vanuatu and New Calesonia also figure prominently as secondary dispersal hubs (Harbaugh et al. 2009b; Appelhans et al. 2014a, 2018b; Hembry 2018). How Zieria arrived in New Caledonia is unclear, especially if the estimates of the age of Zieria of less than 20 m.y. are correct: Z. chevalieri is the only species there, and is sister to the rest of the genus, all Australian (Barrett et al. 2015 and references).

Appelhans et al. (2014b) suggested that the black shiny seeds common in the Acronychia-Melicope clade (probably bird-dispersed - see Appelhans et al. 2018a) were a key innovation, and this clade has 5 (Appelhans et al. 2018b) to 17 times () as many species as Tetracomia and the Euodia clade, successively its sisters. The exotesta of seeds of members of the Acronychia-Melicope clade is edible (birds) and the sclerotesta is thick, while members of the Euodia clade have explosively-dehiscent follicles and seeds with a thin testa (Hartley 2001a; Appelhans et al. 2018b).

Poon et al. (2007) looked at variation in characters of secondary chemistry and morphology in the light of phylogeny. Appelhans et al. (2011: many original observations) plotted a number of morphological characters on the tree, focussing on Cneoroideae; the clade is morphologically quite heterogeneous - like the rest of the family. See also Bayly et al. (2013b) for morphology in Australasian members of the family.

To Integrate: "Protorutaceae" - Phell./Todd./Tetraidium/Zanth. - 1-benzyltetrahydroisoquinoline alkaloids +; 1-2 ovules/carpel; fruit a drupe/follicel/capsule. (70.4-)66.3(-62.6) m.y.o. (Appelhans et al. 2018a).

Ecology & Physiology. Rutaceae have very diverse secondary metabolites, some of which (essential oils, coumarins, etc.) are similar to those in Apiaceae, Asteraceae, Papaveraceae, etc. (Hegnauer 1971; Kubitzki et al. 2011), while their alkaloids are like those found in some magnoliids - and are produced via nine or more different biosynthetic pathways. Thus 1-benzyltetrahydroisoquinoline alkaloids are found in a small group of related Rutoideae, and also in Papaveraceae (and a couple of other families), a distribution that has exercised phytochemists' imaginations in the past (Kubitzki et al. 2011). Robertson et al. (2018) discuss the much greater diversity of alkaloids found in Australian Flindersia growing in drier woodlands/vine thickets over those in more mesic habitats.

Seed Dispersal. For black, shiny, fleshy seeds in the Acronychia-Melicope clade, see Bayley et al. (2013) and Appelhans et al. (2014b). Diosmeae (South African), Boronia and relatives (Australian), and some other Rutaceae have seeds with elaiosomes at the base that are endocarpial in origin and are dispersed by ants (Kubitzki et al. 2011; Bayley et al. 2013).

Plant-Animal Interactions. Caterpillars of Papilionidae-Papilionini butterflies are notably common on Rutaceae, about ca 1/3 of the records being from here, and 80% of the ca 200 species of Papilio will eat Rutaceae (Aubert et al. 1999; Zakharov et al. 2004). The first time I saw the giant swallowtail, P. cresphontes, I also found its host plant, Ptelea trifoliata, about twenty yards down the path (Shaw Nature Reserve, Missouri). Like the magnoliids, e.g. Aristolochiaceae, on which other Papilionidae are found, it is the alkaloids that attract the butterflies. Rutaceae may have been the original food plants for Papilio, since even those species which now eat Magnoliales will eat Rutaceae if they have to (Zakharov et al. 2004, but c.f. Fordyce 2010; see also Berenbaum & Feeney 2008; Simonsen et al. 2011; Condamine et al. 2011). Ehrlich and Raven (1964) noted that P. demodocus fed on Ptaeroxylon, which they thought belonged to Meliaceae - but it is in Rutaceae, so all is explained.

Genes & Genomes. For the evolution of chromosome numbers in the family, an endeavour that should be reworked, see Stace et al. (1993).

Economic Importance. For relationships in and around Citrus, see Carbonell-Caballero et al. (2015) and for the origin of limes, lemons, etc., see G. A. Wu et al. (2014, 2018) and Curk et al. (2016).

Chemistry, Morphology, etc. For secondary metabolites, see Hegnauer (1971) and Kubitzki et al. (2011). Da Silva et al. (1988) surveyed the distribution of some secondary metabolites, suggesting that an overhaul of the infrafamilial classification was in order. Adsersen et al. (2007) noted the value of prenylated acetophenones as a marker for Xanthoxyleae (inc. Melicope, etc.), and Braga et al. (2012) the distinctive dihydrocinnamic acid derivates common in Rutoideae.

Cruz et al. (2015, see also 2017) describe the development of a hood-shaped leaf base in Metrodorea from initially paired primordia and characterise it as stipular in nature; it is vascularized, and leaflets may arise directly from it (Kaastra 1977). Prickles of Zanthoxylum can be in the stipular position.

Rutaceae are particularly variable in flower and fruit (Boesewinkel 1980b). Erythrochiton hypophyllanthus has epiphyllous inflorescences on the abaxial side of the leaf (c.f. sometimes in Ruscus). Peltostigma has a floral formula K3 C3 A9 G [?5], and looks almost lauraceous; Pilocarpus has an erect raceme and the calyx is reduced to a rim. Monosymmetry is scattered in the family, occurring in Dictamnus and Erythrochiton, for example. Kallunki (1992) illustrates the flowers of Erythrochiton fallax as having the median sepal adaxial, but their exact orientation and how they are held in nature is unclear since the inflorescence can be pendulous and up to 1.5 m long. The flowers of Galipeinae (the Angostura alliance of Kubitzki et al. 2011), to which Erythrochiton (but not the tube-forming Correa) belongs, may have only two stamens plus staminodes, a connate corolla, filaments connate and forming a tube, or a tube formed by the serial adnation of filaments and petals; variation in gynoecial development is also considerable (Pirani & Menezes 2007; el Ottra et al. 2011, esp. 2013; Bruniera et al. 2015). Wei et al. (2011) thought that the plesiomorphic condition for Rutaceae was to have have five stamens.

Triphasia has G [3], the odd member being adaxial, and the same is true of Cneorum tricoccon, which has 3-merous flowers (see Caris et al. 2006b for floral development). Carpel (stylar) fusion may be postgenital (Gut 1966). Ovule development is notably variable (Mauritzon 1935b: Cneoroideae not included). Although anatropous ovules are common, various degrees of hemitropy and campylotropy occur, and of two ovules in a loculus, one may be apotropous and the other epitropous (Mauritzon 1935b), as in some other Sapindales. The micropyle can be exo-, endo-, or bistomal or the ovule apex may even be naked, and in bitegmic taxa, either integument may be slightly thicker than the other (e.g. Corner 1976), although Mauritzon (1935b) suggested that the outer integument is often thicker - 3-10 cells across (outer) versus 2-4 cells across (inner), and the outer integument is sometimes (Aegle) multiplicative. Nucellar cells above the embryo sac may be in series, and nucellar polyembryony is quite widespread (e.g. Mauritzon 1935b; Mahabalé & Chennaveeraiah 1958). The embryo sac can be relatively quite small relative to a massive nucellus, and in Aegle there is a layer of crystalliferous cells below the exotegmen and 2-3 layers of such cells below the endotegmen (Mahabalé & Chennaveeraiah 1958) - and on it goes. The endocarp divides periclinally during development (Hartl 1957) resulting in a pronounced layering of the mature capsule, especially in Rutoideae.

For general information, see van Wyk (in Dahlgren & van Wyk 1988: Ptaeroxylaceae), van der Ham et al. (1995), White and Styles (1966), and especially Kubitzki et al. (2011). For chemistry, see also Hegnauer (1973, 1990, also 1964, 1989 as Cneoraceae), Straka et al. (1976), Waterman and Grundon (1983), Mulholland et al. (2000, esp. Ptaeroxylaceae), and Yan et al. (2011: Harrisonia in particular), and for alkaloids, Fish and Waterman (1973: esp. Zanthoxylum) and Waterman (1975, 1999). For wood anatomy of Cneoroideae, see Appelhans et al. (2012b: phylogenetic signal within the subfamily), for colleters, see Macêdo et al. (2016), for floral development, Zhou et al. (2002) and Wei et al. (2011), for floral orientation, see Eichler (1878), for gynoecium/perianth of Zanthoxylum, see Beurton (1994), for gynoecial morphology, see Gut (1966), Endress et al. (1983), and Lersten (2004), for ovules of Harrisonia, see Wiger (1935; see also Mauritzon 1935; Wiger 1936), for ovules and testa, see Honsell (1954), Banerjee and Pal (1958), Johri and Ahuja (1957), Boesewinkel (1977, 1978a: see raphal vascular tissue, b), and Boesewinkel and Bouman (1978), and for fruit anatomy, see Brückner (1991). For the chalazal opening (?vascular bundle) in the seed, see Wilson (1998) and Hartley (2003); for seed anatomy in Rutoideae, see Gallet (1913). See also Straka (1976), Dahlgren and van Wyk (1988), van der Ham et al. (1995) and White and Styles (1966) for information about Cneoroideae.

Phylogeny. In a two-gene analysis, the [[Spathelia + Dictyoloma] [[Cneorum + Ptaeroxylum] Harrisonia]] clade (= Cneoroideae) was sister to all other Rutaceae (Chase et al. 1999), although the position of Harrisonia - sequences from only one gene - was somewhat unclear (see also Groppo et al. 2008, 2012). Morton (2015) found Cneoroideae to be paraphyletic and basal to the rest of the family, although it was not the focus of her study. Recent work suggests that the basic relationships in the rest of the family are [Amyridoideae [Aurantioideae + Rutoideae]] (Groppo et al. 2012; Morton & Telmer 2014; Muellner-Riehl et al. 2016). For general relationships in the family, see also M. Sun et al. (2016) and Z.-D. Chen et al. (2016: Chinese taxa, quite good support). [Aurantioideae + [Chloroxylon, Boenninghausenia, Ruta, etc. (Ruteae plus!, = Rutoideae)]] form a poorly to well-supported clade (e.g. Morton et al. 2003; Groppo et al. 2008, 2012; Salvo et al. 2010; Appelhans et al. 2012a; Bayly et al. 2013b; Morton & Telmer 2014; Appelhans et al. 2016).

Within Cneoroideae Spathelia (chromones) and Dictyoloma (C valvate) are a strong pair; secretory cavities are reported from them (Groppo et al. 2008). Jadin (1901) had noted that anatomically Harrisonia was rather different from other Simaroubaceae (in which it was then placed) in its heterogeneous pith and its lack of medullary secretory canals. Although it does not seem to have pellucid foliar gland dots, Fernando and Quinn (1992) found secretory cavities in the fruits while Waterman (1993) noted that the genus contained no quassinoids, which are unique to Simaroubaceae. Fernando et al. (1995) suggested that its removal to Rutaceae was justified on both molecular and morphological grounds. Razafimandimbison et al. (2010) found a weakly/moderately supported clade that included the old Ptaeroxylaceae and in which [Spathelia + Dictyoloma] were sister to the rest. Appelhans et al. (2011: denser sampling, five chloroplast genes, 2012a) again found this basic topology; support for the groups was strong, and within the two major clades in Cneoroideae, both strongly geographically circumscribed, in one Sohnreyia was sister to neotropical taxa and in the other Harrisonia sister to palaeotropical taxa (Appelhans et al. 2012a).

Amyridoideae. For relationships around Metrodorea, see Cruz et al. (2017).

Rutoideae. For the circumscription and contents of Rutoideae, now a rather small subfamily, see Appelhans et al. (2016); Chloroxylon, ex Flindersioideae, is sister to the other four genera. Salvo et al. (2011) and Manafzadeh et al. (2011) discussed relationships in the Irano-Turanian Haplophyllum, which has colonized the Mediterranean area more than once.

Aurantioideae. For general relationships, see Pfeil and Crisp (2008) and Bayer et al. (2009). Appelhans et al. (2016) suggest that Haplophyllum and Cneoridium, ex Ruteae, are at the base of Aurantioideae, which rather changes the apomorphies for that group. Clauseneae may not be monophyletic (Morton 2009, 2015); Glycosmis and/or Micromelum may be sister to other Aurantioideae (Groppo et al. 2012; Schwartz et al. 2015; Shivakumar et al. 2017: ?sampling, rooting), and both have (1-)2 ovules/carpel and similar chromosome numbers (Mou & Zhang 2012). Murraya is very polyphyletic (Z.-D. Chen et al. 2016: Chinese taxa). For other relationships in Aurantieae/-oideae, see Morton (2009), and for relationships around Citrus, see Scott et al. (2000), Samuel et al. (2001), Araújo et al. (2003), Bayer et al. (2009) and in particular Carbonell-Caballero et al. (2015: chloroplast genomes) and Schwartz et al. (2015: Feroniella not in Citrus). Citrons, some of which have quite large or fingered fruits, group with the Australian Microcitrus and Eremocitrus, Fortunella links with Citrus madurensis, and Poncirus is then sister to the remainder of Citrus, at least its maternal parent is (Carbonell-Caballero et al. 2015; see also G. A. Wu et al. 2018).

Other genera in the family form a single clade within which the classical subfamilies and genera, largely based on variation in fruit morphology (Engler 1931; c.f. Hartley 1981; But et al. 2009) have not held up - Aurantioideae are an exception. Hartley (e.g. 1981, 1997, 2001a, b) had early suggested some generic realignments in Malesian-Pacific Rutaceae that largely ignored the then-conventional subfamilies; this work has held up fairly well in molecular studies. Thus neither the large genus Melicope nor Acronychia are monophyletic (Appelhans et al. 2014b); for the latter, see also Appelhans et al. (2018b). Salvo et al. (2008, also 2010; Groppo et al. 2008, 2012) found that Dictamnus was widely separate from the other members that had been included in Ruteae, rather, it linked with Casimoroa and Skimmia (see also Morton & Telmer 2014; Morton 2015). Rutaceae not included in the previous three subfamilies formed a clade [Dictamnus et al. [[Pilocarpus + Ravenia] The Rest]]] (see Poon et al. 2007; Groppo et al. 2008, 2012; Salvo et al. 2010; Morton & Telmer 2014) or were part of a polytomy including them (Bayly et al. 2013b; Morton 2015). One large clade is mostly Old World-Oceanian in distribution, although it includes the Chilean Pitavia (Groppo et al. 2012). Flindersia and relatives have secretory cells in the stem only and septifragal capsules that are perhaps reminiscent of Meliaceae, but their furoquinoline alkaloids, schizogenous cavities, and subterete filaments are consistent with a position in Rutaceae. Euodia and relatives form another moderately to well supported clade (Salvo et al. 2010; Groppo et al. 2012) perhaps sister to a clade including most of the Australian taxa that were included in the old Boronieae (Bayly et al. 2013b; Morton 2015), and a [Zanthoxylum + Toddalia] clade (Groppo et al. 2012: support poor), in turn sister to the Flindersia group (Bayly et al. 2013b). For relationships in Boronia, see Bayly et al. (2015). A final clade (see e.g. Bayley et al. 2013b) includes the North American Ptelea, a largely African Diosmeae (for relationships, see Trinder-Smith et al. 2007), and a largely Central and South American Galipeinae (for relationships, see Kallunki & Groppo 2007: Bruniera et al. 2015). However, support for some of these groups, and of relationships between and within them, is still rather weak (Groppo et al. 2012; Bayly et al. 2013b; Morton & Telmer 2014). For relationships in the largely Australian Zieria, see Morton (2015) and Barrett et al. (2015); the latter found that the single New Caledonian species, Z. chevalieri, was sister to the rest of the genus, that about one quarter of the morphological species appeared to be other than monophyletic, and that relationships suggested by cpDNA were incongruent with those based on morphology. Barrett et al (2018) found major incongruences between relationships based on cpDNA and those based on nrDNA... For relationships in Clauseneae, see Shivakumar et al. (2016), and for those in Protorutaceae, largely composed on Zanthoxylum, see Appelhans et al. (2018a).

Savolainen et al. (2000b) suggested that Lissocarpaceae should be included here, but a position in Ericales-Ebenaceae is now strongly supported (e.g. Berry et al. 2001).

Classification. Although Cneoroideae (also called Spathelioideae in some recent literature) form a fairly distinct group, inclusion within Rutaceae s.l. is reasonable (Groppo et al. 2008, 2012; Appelhans et al. 2011). Tribal and subfamilial limits for the most part need overhauling (e.g. Salvo et al. 2008; Poon et al. 2008). For a tribal classification of Cneoroideae, see Appelhans et al. (2011), and for the beginnings of a classification of the rest of the family, I tentatively follow the subbfamilial framework suggested by Morton and Telmer (2014), although the sampling is rather slight (34 species, even if they do represent all subfamilies and tribes). Groppo et al. (2012) recognised only two subfamilies, Rutoideae being split into tribes, but the clades are the same (see also Muellner-Riehl et al. 2016).

Kubitzki et al. (2011) noted that a quarter of the genera in the family are monotypic; thus there are ten monotypic genera within the small subtribe Galipeinae (Bruniera et al. 2015). Beyond this, generic limits are difficult, especially around Citrus (Carbonell-Caballero et al. 2015 and references), also in Galipeinae (Kallunki & Groppo 2007), Diosmeae (Trinder-Smith et al. 2007) and around Melicope (Appelhans et al. 2014b). The necessary nomenclatural changes are gradually being made.

Previous Relationships. Cronquist (1981) placed Cneoraceae in his Sapindales which included Rutales more or less as above and then some; Airy Shaw (1966) associated Kirkia with Ptaeroxylaceae, but with hesitation. Hegnauer (1990) included Ptaeroxylum in Meliaceae, although he noted it was chemically more similar to Rutaceae. Thorne (1992) included Harrisonia (ex Simaroubaceae), in Rutaceae, although he gave no reasons for this.

Botanical Trivia. Ehrlich and Raven (1964) predicted, based on the caterpillars that ate it, that Ptaeroxylon would be found to have alkaloids - it has (e.g. Muscarella et al. 2008).

[Simaroubaceae + Meliaceae]: ?

Age. An age of (48-)44, 40(-36) m.y. for this node is suggested by Wikström et al. (2001) and of (96.7-)88.7(-81) m.y. by Muellner-Riehl et al. (2016).

SIMAROUBACEAE Candolle, nom. cons.  - Back to Sapindales


Trees; bark very bitter, quassinoids, carboline alkaloids and canthinones [with tryptophane nucleus], ellagic acid +; wood often fluorescing; (nodes multilacunar); pith conspicuous, medullary secretory canals common; sclereids common, oil cells uncommon; (stomata paracytic); leaflets not articulated, vernation also supervolute-curved, margins coarsely toothed to entire; breeding system various; inflorescence thyrsoid, (pedicels articulated), flowers rather small, <1 cm across; K usu. basally connate, C imbricate; A obdiplostemonous; G 1-5(-8), ovaries ± free, style +, often short, stigmas ± recurved, ± pointed, with elongated receptive zone, dry; ovules 1(-2)/carpel, (hemitropous), (micropyle zig-zag), (inner integument very long, folded), outer integument 3-10 cells across, inner integument 2-8 cells across, parietal tissue 6-22 cells across, nucellar cap 2-7 cells across; fruit drupelets; seed (pachychalazal), with undistinguished testa or scattered lignified cells, endotesta often slightly lignified, tegmen crushed, (mesotegmen with reticulate thickenings); (endosperm with hemicellulose reserve), (perisperm +, thin).

19-22 [list]/110 - seven groups below. Largely tropical; a few (e.g. Ailanthus) temperate (map: from Nooteboom 1962; Heywood 1978; Thomas 1990; Trop. Afr. Fl. Pl. Ecol. Distr. 5. 2010; fossils of Ailanthus as black crosses, from Corbett & Manchester 2004 and Clayton et al. 2009, also Japan; fossils of Leitneria as blue crosses, from Clayton et al. 2009). [Photo - Flower, Fruit, Fruit.]

Age. Crown-group Simaroubaceae are dated to around the Cretaceous-Maastrichtian, a little more than 65 m.y.a. (Clayton et al. 2009), or somewhat older, (84.5-)74(-63) m.y.a. (Muellner-Riehl et al. 2016).

Woods (Ailanthoxylon, Simarouboxylon) from the Deccan Traps of Late Cretaceous and Early Palaeocene age may be simaroubaceous, and if confirmed would have interesing biogeographic implications (Wheeler et al. 2017).

1. Casteleae Bartling

Thorny shrub to tree; leaves simple, (scale-like); plant mon- or dioecious; inflorescence fasciculate; drupelets ± lenticular and carinate; n = 13.

2/14. Southern U.S.A. to Argentina, the Caribbean and Galápogas Islands.

Age. Crown-group Casteleae are some (40.9-)23.6(-9.3) m.y.o. (Muellner-Riehl et al. 2016).

Synonymy: Castelaceae J. Agardh, Holacanthaceae Jadin, nom. inval.

[Picrasmateae [Ailantheae [Leitnerieae [Nothospondias [Picrolemma + Simaroubeae]]]]]: leaf rhachis collapses at the petiolular nodes.

Age. The age of this clade is around (80.9-)70.3(-60.1) m.y. (Muellner-Riehl et al. 2016).

2. Picrasmateae Engler

(Stipules +, cauline); plant mon- or dioecious; C valvate; A 5.

1/8. ± tropical, America and the Caribbean, Asia to Malesia.

Age. Crown-group Picrasma may be (33.6-)16.2(-3.5) m.y.o. (Muellner-Riehl et al. 2016: quass. jav.).

[Ailantheae [Leitnerieae [Nothospondias [Picrolemma + Simaroubeae]]]]: sclereids in leaflet mesophyll; leaves with flat surface glands/(0).

Age. The age of this clade is variously suggested to be around 61.1. 52, or 47.5 m.y. (Muellner et al. 2007: inc. Soulamea, check), (66.8-)58.2(-52.2) m.y. (Muellner-Riehl et al. 2016) or about 23-21 m.y.a. (Pfeil & Crisp 2008: stem age of Ailanthus).

3. Ailantheae Meisner

(Leaves paripinnate); C induplicate-valvate; tapetal cells binucleate; fruit a samara; n = 32 [= 2 x 16?].

1/5. Turkestan to Indo-Malesia, N. Australia.

Age. Crown-group Ailanthus is (53.6-)35.3(-15.8) m.y.o. (Muellner-Riehl et al. 2016).

Synonymy: Ailanthaceae J. Agardh

[Leitnerieae [Nothospondias [Picrolemma + Simaroubeae]]]]: disc usu. 0; (seeds with starch).

Age. This clade is around (58.9-)49(-38.9) m.y.o. (Muellner-Riehl et al. 2016).

4. Leitnerieae Baillon

(Ellagic acid 0 - Leitneria); leaves (simple), (stipules +, cauline - some Soulamea); plant usu. dioecious; (inflorescence ± catkinate - Leitneria; (flowers 3-merous - Soulamea); staminate flowers: (P 0; A (1-)4 - Leitneria); G 1 [Leitneria], [2] [Soulamea], ca 5; fruit drupelets, ± flattened and carinate, (2-seeded samara - Soulamea); (endosperm +); n = 16.

5/22. S.E. U.S.A. (Leitneria), Africa and tropical and subtropical Asia, Malesia, to N. Australia and Polynesia, inc. New Caledonia.

Age. Crown-group Leitnerieae are (55.8-)45.3(-33.3) m.y. (Muellner-Riehl et al. 2016: Leitneria sister).

Synonymy: Ailanthaceae J. Agardh, Leitneriaceae Bentham & J. D. Hooker, Soulameaceae Pfeiffer

[Nothospondias [Picrolemma + Simaroubeae]]: ?

Age. The age of this clade is (54.2-)44(-33.2) m.y. (Muellner-Riehl et al. 2016).

5. Nothospondias Baillon

Foliar glands 0; plant dioecious; flowers 4-merous.

1/1: Nothospondias staudtii. Tropical West Africa.

[Picrolemma + Simaroubeae]: gynophore +, nectariferous, stigmatic lobes short, divergent/obscure/(0)/(long).

Age. This clade is some (45.5-)34.7(-24.8) m.y.o. (Muellner-Riehl et al. 2016).

6. Picrolemma Baillon

Mesophyll sclereids 0; plant dioecious; staminate flowers: A 5, opposite K, staminodes +.

1/2. Peru, Brazil.

7. Simaroubeae Dumortier

(Plant geoxylic); leaves (paripinnate), (simple), (lacking glands), (leaflets articulated - Quassia); (flowers perfect); K with a single trace, C (8 - Iridosma), (contorted - e.g. Quassia, Simaba), (valvate), (long, coherent into tube - Quassia); A (5, alternating with staminodes - Eurycoma), filaments with lateral or basal-adaxial scales, (scales 0 - Perriera); G 2, 4-5(-6); (style long, with separate canals or not); (endothelium + - Simaba trichilioides), tissue below embryo sac massive (with central elongated cells - Samadera); fruits (nutlets), drupelets, ± bicarinate; n = 15.

11/52: Homalolepis (28). Pantropical.

Age. Crown-group Simaroubeae are (40.3-)30.1(-21.3) m.y.o. (Muellner-Riehl et al. 2016).

Synonymy: Quassiaceae Bertolini, Simabaceae Horaninow

Evolution: Divergence & Distribution. For more ages in Simaroubaceae, see Muellner-Riehl et al. (2016; also Clayton et al. 2009). In the map above it is obvious that distributions of some genera in the past and the present are very different. Thus Ailanthus, now known only from Asia to Australia, is widespread fossil in the Eocene ca 52 m.y.a. (Corbett & Manchester 2004). Clayton et al. (2009) discussed the fossil history of Leitneria and Chaneya, the latter not certainly Simaroubaceae; fruits identified as Leitneria, a genus now endemic to the southeast U.S.A., are reported from eastern Siberia (Ozerov 2012).

The bulk of the diversification within Simaroubeae has occured within the last (27.4-)19.5(-12.1) m.y. (Muellner-Riehl et al. 2016). Despite (or because of?) the fairly good fossil history of the family in the northern hemisphere, the biogeographic history of Simaroubaceae is of considerable complexity with much dispersal (and some extinction) needed to explain the current distribution of taxa (Clayton et al. 2009, see also 2007).

I have put in some phylogenetic structure above because of its effect on our understanding of character evolution; Simaroubeae have some distinctive features, but they are well embedded in the family, so these features are not family-level apomorphies. See also Devecchi et al. (2017) for the optimization of a number of characters - the focus there is on Simaroubeae.

Pollination Biology & Seed Dispersal. There are reports of other than porogamous fertilization in the family (also in Anacardioideae: Wiger 1935; Rao 1970).

Plant-Animal Interactions. Leaf webbing caterpillars of the yponomeutoid moth Attevidae are notably common here (Sohn et al. 2013).

Chemistry, Morphology, etc. The quassinoids, probably tetracyclic triterpenes, that are charactistic of and restricted to Simaroubaceae replace other limonoids (Waterman 1993; Vieira & Braz-Felho 2006).

The adult plant of Holacantha is basically a giant, intricately-branched branched thorn; the leaves are reduced to scales.

Although the carpels are often more or less free except basally, there is often only a single style. The gynoecium of Leitneria is described as having a single carpel with two ovules, of which only one is fertile (Tobe 2011a).

For additional information, see Clayton (2011: general), for chemistry, see Hegnauer (1973, 1990, also 1966, 1989, as Leitneriaceae); see also Jadin (1901) and Boas (1913), both vegetative anatomy, Webster (1936: wood anatomy), Alves et al. (2016: floral morphology of Simaba), Endress et al. (1983: carpel morphology), Wiger (1935; see also Mauritzon 1935; Wiger 1936), all embryology, and Fernando and Quinn (1992: pericarp anatomy), also Abbe (1974) and Tobe (2011a, 2013), inflorescence, floral morphology/anatomy and embryology of Leitneria.

Phylogeny. The overall relationships in the family are rather pectinate. The topology [Picrasma etc. [Ailanthus [[Soulamea, etc.] [Nothospondias* [Picrolemma [Quassia* [Samadera* + Simarouba etc.]]]]]]] is mostly quite well supported, although support for the first clade is not that strong (it may be two clades - see above: Muellner-Riehl et al. 2016) and that for some nodes along the backbone (the genera that might move have an asterisk) could be improved (Clayton et al. 2007; see also M. Sun et al. 2016; Muellner-Riehl et al. 2016). Leitneria is well embedded in the family (Clayton et al. 2007) and is embryologically similar to Brucea, in the same clade (= Leitnerieae). Quassia and Samadera are successively sister to the remainder of Simaroubeae; for some relationships in Simaroubeae, see Devecchi et al. (2017); Simaba turns out to be polyphyletic.

Gumillea (ex Cunoniaceae) may belong to Simaroubaceae, although the stamens do not appear to have scales and there are many ovules per carpel - the latter feature in particular is rather odd for any putative sapindalean plant. It has stamens alternate with the petals, so making membership in Picramniales unlikely (and ovule number also militates against this, too).

Classification. Note the demise of Leitneriaceae, the only family previously thought to be restricted to the continental U. S. A. - alack! For the dismemberment of Quassia, see Clayton et al. (2007), while part of the polyphyletic Simaba is now to be called Homalolepis (Devecchi et al. 2017).

Previous Relationships. Molecular data have suggested the excision of Suriana and its relatives (see Fabales-Surianaceae), Harrisonia (Rutaceae), and Picramnia and Alvaradoa (Picramniales-Picramniaceae) (e.g. Fernando et al. 1995) from the old Simaroubaceae; its limits always had been rather problematic.

MELIACEAE Jussieu, nom. cons.  - Back to Sapindales


Trees; tetranortriterpenes, flavones +, bark often rather bitter; secretory cells with resin, etc. +; nodes 5:5; leaves (even-pinnate), leaflets not articulated (articulated); plants often dioecious; flowers (3-)5(-8)-merous; K not enclosing C [?level], often connate, (vascular trace single); A connate, 2 X C (5-30 in a single whorl); G (1) [2-6(-many)], postgenitally united, opposite C, hairy, stigma capitate or , wet; ovules anatropous/straight/campylotropous, (micropyle (exo-)/bistomal), outer integument 2-5 cells across, inner integument 2-4 cells across, parietal tissue 3-9(-18) cells across, nucellar cap 3-5(-9) cells across, placental obturator common; megaspore mother cells often many; seeds often pachychalazal, coat vascularized, testa undistinguished but thick, endotesta crystalliferous, (tegmen multiplicative), (exotegmen fibrous - Trichilia, Swietenia); embryo white; x = 6, 7?; nuclear genome [1C] (269-)541(-856) Mb.

50 [list: subfamilies]/641 - 2 groups below. Pantropical, but largely Old World; plants of the lowlands (map: see Wickens 1976; Pennington 1981; FloraBase 2006; Flora of China 11. 2008; GBIF x.2009; Trop. Afr. Fl. Pl. Ecol. Distr. 6. 2011; Fl. Austral. vol. 26. 2013).

Age. Bell et al. (2010) suggested that the two subfamilies diverged (48-)39, 38(-27) m.y.a.; Muellner et al. (2007, see also 2006) thought that diversification within the family had begun considerably earlier, (98.5-)96, 73.5(-61.5) m.y.a., Koenen et al. (2015) gave ages of (91.5-)80.5, 59.5(-54) m.y., Muellner-Riehl et al. (2016) ages of (89.8-)79.6(-69.7) m.y., while Wikström et al. (2001) suggested another later date of (40-)36, 30(-26) m.y.a..

For fossil Meliaceae, see Mabberley (2011).

1. Melioideae Arnott

(Suckering shrublets); (hairs stellate - Aglaia); buds naked; (nodes 3:3); leaves (two-ranked simple - Turraea), (bipinnate); C (-14), (connate); (gynophore +), (style hollow); ovules 1-3(-many)/carpel; fruit a loculicidal capsule, (berry, drupe, nut, inflated); seeds usu. with aril [funicular in Naregamia] or sarcotesta, (dry, winged - Quivisianthe); (embryo chlorophyllous - Trichilia, Nymania), (endosperm +); n = 8, 11, 12, 14, 15, 18 ... 140.

36/585. Aglaia (120), Dysoxylum (80), Guarea (75), Trichilia (70), Turraea (60), Chisocheton (50). Pantropical, but largely Old World.

Age. Diversification within Melioideae began (91-)78, 70(-58.5) m.y.a. (Muellner et al. 2006, 2007 - the latter a little bit older), (81.8-)69.9(-57.5) m.y.a. (Muellner-Riehl et al. 2016) or (83-)72.5, 54(-49) m.y. (Koenen et al. 2015).

Synonymy: Aitoniaceae R. A. Dyer, nom. illeg.

2. Cedreloideae Arnott

Buds perulate (naked - Capuronianthus); leaves (opposite), (leaflets ± serrate); (C connate); (A at least partly free); (nectary 0); ovules (2 - Capuronianthus) 3-many/carpel, collateral; fruit a septifragal capsule, valves falling off, columella persisting (slight); seeds winged, (fruit ± fleshy, seed single - Walsura), (testa massive, woody or corky - Xylocarpus); n = 13, 18, 23, 25, 26, 28; nuclear genome [1C] ca 388 Mb [Xylocarpus].

14/56: Cedrela (14). Pantropical, but largely Old World. [Photo - Flower, Fruit.]

Age. Diversification within Cedreloideae began (86-)75, 67.5(-58) m.y.a. (Muellner et al. 2006, 2007), (75.2-)64.8(-55.6) m.y.a. (Muellner-Riehl et al. 2016), or (59.3-)48.5, 38.6(-33) m.y. (Koenen et al. 2015).

Synonymy: Cedrelaceae R. Brown, Swieteniaceae E. D. M. Kirchner

Evolution: Divergence & Distribution. For additional divergence dates, see Muellner-Riehl et al. (2016).

Muellner et al. (2006) discussed the biogeography of Meliaceae, proposing an origin in Africa and subsequent dispersal. Koenen et al. (2015) also suggest an Old World origin for the family, and although one thinks of it as being characteristic of l.t.r.f., they suggest that its common ancestor was a deciduous tree of seasonal or montane habitats. Indeed, crown-group ages of rainforest clades in the family are a mere 23 m.y.o. (Late Oligocene/Early Miocene), their stem-group ages are Eocene and they may have been quite species rich in pre-Late Oligocene times, but with extinction then and subsequent diversification (Keunen et al. 2015).

For the biogeography of Aglaia, see Muellner et al. (2008b) and Grudinski et al. (2014a), the latter suggesting Oligocene-Miocene rather than Eocene diversification; movement was from West Malesia eastwards.

Ecology & Physiology. Although only a small family, Meliaceae make up 17% of all trees >10 cm d.b.h. in Sumatra (Mabberley 2011). Carapa procera is one of the four common species mentioned growing in the ca 145,500 km2 of peat in the Cuvette Centrale in the Congo (Dargie et al. 2017). Xylocarpus is a well-known mangrove genus; for some information, see articles in Ann. Bot. 115(3). 2015, also discussion under the mangrove habitat.

Pollination Biology & Seed Dispersal. Most Meliaceae have a well-developed floral tube which is formed by the connation of the filaments - a rather uncommon way of forming a tube. The pistillode in staminate flowers is well developed, the result being that staminate and carpellate flowers are very similar functionally, although the staminal tube in the former is often somewhat narrower; the staminal tube and the large stigmatic head seem to be integral parts of the pollination mechanism. The whole apex of the style is commonly more or less massively swollen and is sometimes involved in secondary pollen presentation, as in Vavaea (Ladd 1994).

Animal dispersal is common in Melioideae; for detailed studies of the dispersal of arillate-type seeds of Malesian Aglaia, see Pannell and Koziol (1987). Wind dispersal is common in Cedreloideae.

Plant/Animal Interactions. For the diversity of ant-attended extrafloral nectaries in Cedreloideae, especially Carapa, see Kenfack et al. (2014). Some species of Chisocheton are myrmecophytes.

Caterpillars of the pyralid moth Hypsipyla are stem borers, and can cause serious damage; all the host records I have seen are members of Cedreloideae.

Vegetative Variation. Munronia is ± herbaceous. Most species of Guarea (tropical America) and Chisocheton (Malesia), both Melioideae, have indefinitely growing leaves, although despite this distinctive similarity they are not much related (Koenen et al. 2015). In Guarea the apical part of the leaf is shoot-like in its gene expression (Tsukaya 2005). The leaves of Chisocheton can be rooted (Fisher & Rutishauser 1990), and then they continue to grow for a long time, although I do not know that a tree has ever been produced from a leaf. Species of Chisocheton such as C. pohlianus have epiphyllous inflorescences, flowers appearing between the leaflets; specimens of C. pohlianus have been misidentified as Rubiaceae. Capuronianthus (Cedreloideae) has opposite, compound leaves, while the simple-leaved Vavaea and Turraea (both Melioideae) look rather unmeliaceous except when in flower; the leaves of some species in the latter genus can even be two-ranked, borne on short shoots, and lack articulations.

Economic Importance. Azadirachta indica (Melia azadirachta) is the neem tree (for an account, see Singh et al. 2009); the wood of Swietenia spp. is the prized mahogany.

Genes & Genomes. For genome sizes, see Lyu et al. (2017).

Chemistry, Morphology, etc. Although it was thought that the two subfamilies could be separated by their limonoid types, work on Quivisianthe (Melioideae) suggests that the distinction may not be that simple (Mulholland et al. 2000). Sieve tube plastids with protein crystalloids and starch occur in Melia and Azederach. Walsura often has leaflets with ± pulvinate petiolules and prominent reticulate venation.

Although the flowers are often apparently perfect, dioecy is widespread; carpellate flowers are the first to be produced in the cymose inflorescences. Gouvêa et al. (2008b) drew the flowers of Swietenia as being inverted. The filaments of Vavaea are largely free, as are those of Cedrela, Toona and Walsura (Cedreloideae-Cedreleae). Indeed, Cedreleae are rather different florally from other Meliaceae, but features found there such as the more or less free stamens may be derived, not plesiomorphous as one might think (c.f. Gouvêa et al. 2008a). There is considerable variation in seed morphology and development (e.g. Wiger 1935; Corner 1976), even within the subfamilies, and this will have to be integrated with the phylogeny as it develops.

For general information, see van Wyk (in Dahlgren & van Wyk 1988: Nymania), T. D. Pennington and Styles (1975: generic monograph), Pennington (1981: Neotropical Meliaceae), Pannell (1992: Aglaia), Mabberley et al. (1995: esp. Malesia), and Mabberley (2011), for chemistry, see Hegnauer (1969, 1990) and Mulholland et al. (2000), for embryology, etc., see Wiger (1935; see also Mauritzon 1935; Wiger 1936), Paetow (1931), and N. C. Nair (1962, 1970 and references).

Phylogeny. Cedreloideae and Melioideae are both monophyletic (Oon et al. 2000: one gene, Cedreloideae not well supported; Muellner et al. 2003: three genes; Muellner et al. 2006: rbcL alone, sampling better; Koenen et al. 2015; Muellner-Riehl et al. 2016). Two Malagasy genera previously segregated as separate subfamilies, Quivisianthe and Capuronianthus, are embedded in Melioideae and Cedreloideae respectively (e.g. Muellner et al. 2003, 2006; Koenen et al. 2015; M. Sun et al. 2016, q.v. for more details).

Within Melioideae, Melieae (including Owenia) are sister to the rest, but with only moderate support (stronger in Muellner-Riehl et al. 2016); relationships along the backbone of the rest of the rather pectinate ITS tree are poorly supported, but rather better resolved by rbcL data (Muellner at al. 2008a). Owenia, paraphyletic and including Melia, is sister to other Melioideae in Koenen et al. (2015), who suggest that there may be four more small clades successively sister to other Melioideae. For relationships in Aglaia, see Muellner et al. (2005) and Grudinski et al. (2014a, b), in Chisocheton, see Fukuda et al. (2003), and in Trichilia, where relationships are [T. havanensis [African species + American species]], see Clarkson et al. (2016: ITS only).

Within Cedreloideae the clade [Chukrasia + Schmardaea] is sister to other members of the subfamily (Koenen et al. 2015; Muellner-Riehl et al. 2016). For relationships in Neotropical Cedreleae, see Muellner et al. (2009).

Classification. Cedreloideae used to be called Swietenioideae. Generic limits in Melioideae in particular are uncertain, genera like Owenia, Lepidotrichilia, Dysoxylum, and Aglaia all being more or less para/polyphyletic (Koenen et al. 2015), and the limits of Trichilia will also bear rexamination (Clarkson et al. 2016).

The connection between species limits in Aglaia and phylogenetic relationships as they are currently understood there is somewhat unclear (Grudinski et al. 2014b).

Thanks. I am grateful to David Kenfack for useful information.

  • Boryaceae are xeromorphic, some being resurrection plants, with aerial stems and stilt roots; the inflorescence is scapose and involucrate, but the flowers are undistinguished.

    Age. Crown group Boryaceae are dated to 54 m.y. (Janssen & Bremer 2004).

    Evolution: Ecology & Physiology. The arborescent Borya can tolerate extreme dessication, but with some interesting wrinkles - the response is facultative in some species, or only a small part of the leaf may be dessication tolerant (e.g. Barthlott 2006; Gaff & Oliver 2013 and references). The plant is poikilochlorophyllous (their chloroplasts ± break down), and the leaves can remain living but completely dessicated for four years or so (e.g. references in Gaff 1981).

    Bacterial/Fungal Associations. Borya has tuberculate roots that may have the coil-forming Rhizoctonia fungus in them (c.f. Orchidaceae).

    Chemistry, Morphology, etc. Porembski and Barthlott (2000) say that the stems of Borya have monocot-type secondary thickening. There are vessels with almost simple perforation plates in the stem (Carlquist 2012a). The pedicels of Alania have several bracteoles.

    Additional information is taken from Dahlgren et al. (1985) and Conran (1998), both general, Gaff (1981 and references), anatomy/physiology, Porembski and Barthlott (2000), velamen, and Conran and Temby (2000), floral morphology.

    Previous Relationships. Genera of Boryaceae have often been included in Anthericaceae (= Asparagaceae-Agavoideae), as by Takhtajan (1997).

    [Blandfordiaceae [Lanariaceae [Asteliaceae + Hypoxidaceae]]]: ?raphides; blade with distinct midrib; nucellar cap ca 2 cells across.

    Age. The age of this clade is estimated at (98-)81, 74(-56) m.y. by Bell et al. (2010: note topology), at (79-)58(-35) or ca 38.3 m.y. by S. Chen et al. (2013), and about 84.5 m.y.a. by Magallón et al. (2015).

    Phylogeny. An at most moderately well-supported - if consistently appearing - group (Rudall et al. 1998a; Chase et al. 2000a; Fay et al. 2000; Davis et al. 2004 - Lanariaceae not included; Graham et al. 2006; Chase et al. 2006; etc.).

    Chemistry, Morphology, etc. See Conran and Temby (2000) for general information, especially about ovules.

    BLANDFORDIACEAE R. Dahlgren & Clifford  - Back to Asparagales


    Ԁ>Q94@>J)M!RpihJ1N(ŠJQ@ ZQ@iJZC@ =yiޤj !`+':izU[B)=k9Zw6C H W߃D:d=&%fuZԙ[fߚ-Gn?E%խ-̾Z.qZT+^rn i?gR;»Q@3h?K6M綖h.g{4# ]HCjہ=MӼ?:jNn#Wn;jKqέv ɞ1? j56SU%e>$P6r>}8[+N?V#T ֻ/rxU_ j:J#nr)hs24IXm^Gu~ rlv̬0 ҵX\YOy'H H " akŷ HƟ1+{ "̎HcZ7aUI%y#09Ŀw=CsSA^Cs(+ۏ֫e=LL6zy@;zĞ3ТmR6'}j, zî!Lπ.ݹ>+|c5u3a.Np{,3)mr-;7:&nA<"dHRR$; .qOpaf3/q64Pm3ͤ%x2SȒQ<]F(u?5?W4UqKðs>Ccđ,J]V&eI#]d`&(}6mx" ~u qVef~E]yP\I18V g-L`ڍ/:I]+WRf6($O`}kO?Ma]k+#U} #tǂL\}{y$a [<[/s:P>f{?VS7*D똓|#:2x(O2 O\p){(3>׿܏C?0Ot6[;guP-0{Lk= u~5o8:sGs3?k;3.f0 iㆾEbÞ؜b F_G/G oш02w,Ė#7'4{3>ڋ)ԑfAVxMXHg*y=[^ p4v}O3_*?>v鷱i[2J3#xsjeNaSqߚR0sWp>Oc0-{Ԋ!7բ3onoO6?he Qyn{y3v`Oc&ؼ_r: zI_nCGj'b=wsd.>#V>_QLq敧cyGs@nmtvg?Xҿ4g'a5ld~OlDVS+Iܲ 8*1N}i.iӚL攚; ROKLў(~RfZJ'4QGEi2i>!<}tǝϖEff.Wr?jg? ּv`s5nVF59 .~`@+7[`Fr}Sils2䒧^,9AK.8?vWb9 1$<潃eTVvIWuΧb '(NMz0)3vޏjC'4iQ4=@&9qNjPhKښA4ʐ}ҌnM0{TlE=8HTRtPpH'q Ajb,?ӷ=\MY4n"8ʲ>1jlt#<ǑYg.crARAZܒs'c* 2W &hqw5 ߲X> udvBepc qr? -+^Ozu^9ռ[ΩlހH2j!Q8ݲ{>k+hz5,eWǠ*^Hj#zqP|\[Ե),H,ڦT#^2JnW4鯤kmީב!dqV=D|736>KkwO.cc3ޝfJReD1M9X[p#^{*2 {W#د|> Ymؠu<.OalАW!>O-cNv<0PN=^1گE. ; |J`h>|E ?VVޤ0 ߓ==+!$awc}9\l&b'v&_Uڙb=߅TTijmUT'q  \ܒrwEexAcT|UɧJc+Ք2FCJșWx1@ω˴ ?νce4Zp@ɴwǥ|䫽T5xSPBMBxm1Ҁ>I`+ԟΝR9PG.{v VB&|{y?.}<tC㺃_3+} kkUF)j˸^G uY}6J?jOdmK\xj2P 7:h O<`$T_0N#&տtx>xMZ|^5L;hg=JǺ:3$Jv2 |: O h B+M_jR[QQs_'ii?/h\ȑ?-}q7߇R:1}*7e xWM^;+/"T$8"U@פ?Es~7gž 85)Vbv$y"K kW;,8;4 8c<9|W36$>Tcbm.}SOM[Çr26j7#𑡋{K K&_ -xSw >|+glQCx"=H<*.ן x;ú\n=p $u3tǧ?sHKk<&Y\F߄MFQYgI] aݎ8?MMSO?278k@hyF:ɖĪF$ 3&?7FDyv ӗX3I;59yU Gn5D? b3eĨ=o+~ 3k.Iu`,e9=߷x=ty/3]_kRDu#)'(3Wdbʈښ姊m6=t0ӺS7 $LWD d5Oiځל|mdžu/A'K60v2Hx=Oh 4{YOa4Me40&Px&ysF8~|IΘȞ`G?Θ^r)I89ⴾc2:d?C_\)1OXߕH/t>@Uu7ZƟjm2[JKnLv'[;F=:R{;ͤ"]#Oɹv5򷁼AuL,SFaKGDZ8f2dҼ^G>]_&ZMffO0=dָ-nwhSEш~Tq}iP{P1^;PbrO\Xw /SڐPJ}p=iB~4[~!U_ܱ_zbF'SNTKpDQZe$A0$F}^h>38yuy&W<7ۻ!NVkxͥAm*$9i$A'<=NW;<Ѹt.6 >ld-79fzqI7^/S2{h-&,=iمwd=i4oO>[СP7 M}qȱSY+=)Y&tisKb80;mVϹֶ恏z^sڀ~ԙ49Mn#s>".?e)FJ u`sӳZG#W־mw{rw?:)l׳J={yM<9@ 4h4Ґ搒xGj^i3ޜ=0iKLN6O#A4CŒ0ƧCv1 'fo!p01¾PiPo峜u{KCme aך1u5|U|1=ղrw9p=9?|m$2nf;9O~^R6w6MvObOxkQȥY" LfY.#B0펆WXl(<]cv[%#|Ƚ r}GYZApFpyzu5(fdgaSs5|9*GUۘcgs4n.bG*_#֖h4}2A>TJ7بJUygk5܃%vQt_t'Cc `Zw/kz*̒ >jz; Ȗ-O<8$mz)!i&kc.d/9,#Ӂ\\vxVM~MԵFI#Sr]GkAs6N] N9$x#A,C4͏vu Eem)ܐ3A+g8܆,=)BO_1ֈq>u>|?{S̓۱0B(7mo؂ pV&}NsH bHBg@`@F GQL jv1vo^1wXRiW7"pG邵Ɖh:t?ZH7I<@?䎣B/I.$1ZF q!i4mFBn`3[_EYT-$;/jQhOĶp)0ǡFAڠ8#62O4Տ{'۵Ka 0=VEŽbxb=]],{^"ۻ9\OfsҩbWh6#խ.Qm>yaWS\1]t\Sۤ3#.YIE;:ơ5g:Jyd. '?(5Sgy.ZigbzO.QnWgB?ur~n1trHQ xkYwF*N0x?(k_K垏iO5Z6:6l (<3MJJlRF#ye>n;x놠@$e]Cc' cݒAN2H 1wޕEM_[>R9Fr7=8Weӣ\ngÓ޳+?ݰaQDI.İ“Yzݼ q=$8ÀQXg*Fd(s-dYmmQ|ͣdFH`Ho^v25ճӴ` rP69otz){{1k{Br[UZ [˅i آ 3q8Fh6sioq/o|00;sjFQ\L` 䎿W}w-Ρ_7wW׏~+O>P1n6M !o/yR#*AS##Er`$Vڪ_qu#Ѩ_,q([9Gҁ%<tv qsiQ9a@[Bƿ|a, _ПW잦O)a%~ŠJR ~4xUփMOOyAh o2V?n~мmsLkkw1" $OAڢ\\L 2+LJ//#fZd+ł}㚷:5Z ;۳q[x(}x#%]CTMQ[;pZ['9x8KƳsboyK,b 9ߜ񯍼G Jk2j1`w g8s}KBTZQSFq8qѨb \E6%uasG,,I A]k=!e)l^K;+7%'(\MivQ>C}[j ڥ#1o~4ֵ)v2'H yh Gjjp4$ 9a[>!<㷭|҉GtۊWcHo=yH3Epbި裱mn`UpoEDLlw<֊6Bҟ`03Lڽjf6'j^3#_=߳qco%9]~3 z0E!9##N )=i3&yў:@/K`&<zvj542@}AJ H.iG@f)?.iIތPj9hiSMU?Qٸdpb+dд {u-J1Wv<SxK <3a`}rHm41m hzc5&:6VBL)'?ʒ4t%tp}C>q: XIrIfqr&$ |եԒ2*aqsHvǯ֨=h8 {{NveV1,ȱ = 85 o)[!I"Om51ٚr~VGqu NARy!ecPt4=&tKYsu,\eKǪ5 2<;Z'q<>Q=EzznW7(fSO~F[u]R $o B6/I̥E#ֹ h!mo1!<1&P0;F=+K?o7,xW\TM|6xS_g? Ubώr[pN֮``澲oI|ktTZ_Ђ#; 3كރ9,k&*g#jdiF<@G/앨`g`sظ"6&W9> ,@I>߲6^OUj.V&?hKLL`;pi +2k܏X 9Y.Fru q9,b^+2ᄇz~&ɂ#+>_ُjvi[c58 3*KsG4Ԑ+dy8⽦٧4;f9 u\?9lvJ|+3"v-1IdLzt5~P<#r6%WOŕblosGYis86㱨ZF~v^/ќ ؚNH|OQHP) 8(r\}zT2u???ӎW7?G?|'gls #]7M\΢.$0df>@pqj/`y^IJ9ۚ{O iz^]bK(m,.ඎXUG%H>lt=+[ZPՖyY%?s_lbmm6VA=%e˴lLk]&̳L1\gp>09=1)^udu9"DdK0q{R-rhֵX n`'cӵs@8Ҝb,\9=9<~׺͕qjPY~Tiᑌ〼;UZWȮSnejrHCJہ z}3h;quԷc˸C4rwB2yFW1|E3{ y *v#=ry#G>Z/>г4 o 60:+_M}ZPwh1NBJu{Wմ?Kǧ̰`腇$ o |kڲk$leH h˞r4 wYN +{ 72+9Bܐہ#'uWҾjԣ[x>bo2Me 5%=)|etM mD!, p'ݓlZk?PI.G 6pJUX☊ֿ /Rִ:k,f}d aOLc֢ᦷ3E[X]B$FJ/ԓڳu7Ze?,o%yL ں-n[(#l[hdxg`W,wdt P[vk.=9m/3,YrW5#Ö4KIss3CP1׊ou5ݵ5Ηuh[K,+yϠb> jV70鉧icq$@3u g`Wzb\gZ-~byKhw;yx}j'9gS|]y!;ʟ4Z bbVko5l@vtݞi!T,7Zɼa11⺯G6}3F캮. IJb{@66yL po`%o􀦞" ݽEv-:G`g ;bPӢ0j4֬C EwpATOA enmci$>Y؎rXdeF0yK[;oMkdBUVRr$pNA ~ hR`dU*z|i[TRFNJԑڴ{vaxbJd \lIg8=[H|A(K)ݷB6S1@ /.euH#%bU`I,k?vKE{KL Vh7O~kdiꫪ}Ԃ# m c|K~h-,g֚M_*iwj"m:kؘ;W./֚!K {]Lŋ H!<k`kaL1F*,`Pf LZ(ŷlҏ p2:;|+ֱ] L:}sYRWa-OcIbNĺqx.HNJҼNKBpc?v4T۷Lڠ#9QҪZΣi w:mqD>?xpk_3f V~mޛ2XiEk-ʮ@2 :wj׶R=F9WR-PNBru敀/Z[JY] N?Eg,k90(㞮֒FU|Ӷ}zz~J񛣦\ t:~PqEqSc~ga뉻;^{J(eT?\}:ׯ&w^{>hH ?zĝv?:*`r0?~ׁZ\$yavny$k5X <hb'U9ۃjYns &;Rw'f%݅eؽ>AP3ŗ=zTz41Q1 EARN&Hi`Tr=i 6dn?HF ;RJS#ҒMÕx3,W*rS8+YJ= #&v>U*big̯ˠ~"֬x%Gyw,|=ZC6I{v(c/Lu#֮W %-Sח7❎RTYNF'oF|NO5- Zܲȣ'E(jiy4hSޜ P)n)wcI Q֐ צi 01@s֗L(AF)GOҗ8K֓@a҉dM#LRp?SLhs}Fi@P"tɧ?ЫJ&IĚs֏Qf<{П {? E7<;UWٳUUKNG 7υi#/j~|'ǂl̿)Og2'9yo3wp?TuB<.ٿ8KO]7&)^ԚdS7V_}]dxic5TgYp3 oQ^=4VG~>x8؏Ӫm#x+.ea?-})˸Y6"]]&?fƷ?=}:zKY-X~:)ڕ*O~+јcrj߲'?^П(+Hdd.T|K7Wh/qҩK&|JSDqׇ—wiY*>d~x8U#(%]\ 3(` 1_K"{*rwctHD:JR ߊk;YkhdY ;zx%EK;1d k9msSa[çInu1gH_v.'V.F=~m+KnӬu .1#g/~8yFT̚5eRRslAuMkON ټ}ǷfӜm.wZ.tҵ֗e19K]PTrҡχh{N2 \4GCv9>0{Ϡ-%.#igV.}A*wFesBr#Ngv]B {i#>sO+{xlqFUGy Km2MRJ H.9ٛ#d.|[l{ zpJRIS؞kč7_wK]: ]قgkkEU\خKlGwgFݺbV:<5e!Whȣԕh}J3AMHCu#qTX9`0C+Kq/2|UvZ:hJB23ע3F@9nߟ]V 9qW[0YT`ߟ׭~͇&9p ףGG<A>3]8'4iZi8SYj*E]ōy{bGTљNxAjrWk7Saܴ>zr>ƺ SfQIJlu" AMK$I.Iٔ:8ĴџBxCz~N -#w#|nn|!$;ץ-}]E Ae?=]Ika>:L`"Rۡj ڧ6Jdicr0 5$scg=r0,Q!m ٪͏RII+#!ˣآZy\P/$RnH7 R6} hr[si:׼U$}@9?Ֆi\v##:2;=k-GMogՠ\bBLWן }u^oM~LeZ!AF=)9J:Ĩ$}=PyFc=KA+}["Uu}[N7:.D^w=}ͼF F\i#o{r%I=4YZ.j":gj!u's?' G9P"E5 '֢R<u4 @Qri3.sڀ4~T#^ւrxҊ9}h@ @ ⛞6s"('K@ "u{Pu4uff@ŠQ@4;is@֊L>iO4ҐL֐B('#ZZo^4 ^Q֎M iMrmy1 A;Wx#l"Obwe9=9=km0$~Uޕ xf֭EN-Ԏ0 )9Shk\ɁۘԎU˦kgEvd,h/C˞O~+g׌X>܆Cֻ)F34 zӉoJ2:wRidq@M8f߅**2y4.ӳPSPzT`IMݩ@:Gڹy?3Fm_3OsWY-;U{ Ʒ-+֜nfm$8-QL1q֞S;sL$rx+]Xr 7Rx_j_{ =AyP=0p]l,:LMw>TAeiw@1q ,?V{om) O##P!ݟΦbJ^cc%_ioy+LR ~u,)Fi1;(9 8iJPGS֚͌{@AN{ ax@9$2r8HF1(6^#r{sH@,ja *ˑBPw{2 r.p3N0.p v+*Go߇vzͽH09՚*?6߼B;{v:=nf}pHfC*nʌ#4NlSE8t-.}iJQ7>HHsAL`sڂ3HM!4)M?J =hhihy(i7{ў))s@M&y;8I)k2jz5ՄWY<[/5G1z={]6wDg,d?(,I}$ BsLosLN.pG^O5:+pKQI'1]^sJp u đxO:Z;CF<DI,H$+p:9#R~vyINimv/8J% xq}?hY? Xo ~9jBFFN3$+,9#f8 H|={˹`% ~?Ẓ?~N>ỳ H(,yһe/sA4֗#ֺGIi<{!#A?ZC!80!8r?2Q[->ky .z~eMYpH;KRnO+9#5b0?ZAȧv} ErY7\+d{T   ب"g+;h^bIܸW<԰z9x@hsքHRF1[IP[1$/\UKs>A|SеXӟ~3]71@zb;pQxH^$u:~&g!F꧰?[B8]]BҝU=>+u'2j<]$0}3Iqހ Rwg4fAK~XẒz+sJxu ~FOUm= [Z!u0LqRo(N Vb{ 5${ʁRe&zy ˞bG c4䐅*>ph 9 h~y !~9|Ζ?M cRJǨc; ^`N7>R98/܊oR@;J1Ҭ5. I2…'*6āЋ29Ćm[MlZOqSWP }^yԩ#" f׈|=/|z2w@}k|DV-;ژ4͐ӯ'*J}'/#Ƕ?iJR~=(ޘ0“!>&Bi304h9wKx.i4}h@{ӳL#4x8s@ (9LhWw2,z͢&XTߓ i~?¶؛پU[BdAvS-H?&Z?]p=;3>YCUogh˳KFp>x+ 2=gmtk*;' ЩAt34#&T83 T\`jWY7eM'؃Jn M:s(Z7ը$Wc5<7 r~C9֗`sm.x?qr~hC 8=:R 2}z}#m~;{dg5m?hDNяՅxc3 )?? =xv}oGxn?HCoo̟q% +nLGnFЉڕz?@`y=_+d˞=)~CKsZ[њh!Sgxi=`:ȣ'"G%5~W]ß}OIBxD Gū9#;=O8TB=9G|z{2J? >7x-7nԩ|:C$6A 8$u gMGIWg־7/Tz)~&л09#?/a.̻Dͷ*~8wY=f@1o+jwe|zdg9.}^AS't6ζGuMHukN˫N{hɮi-u s2jvn?GFxg#лCW]/S~4xun'VFxէ)B$g'ךw*R!qUzrM2R09<ֆ薋sg q$c0+v% /;;&Ϝ"*C3ݟJ3}jt5KbXޙ'۷|H'b|Un" cUi|vQ߶(`x,Қ[eFg(.*cR,-ӵ#ڡAsۚhLW!wm#G4M6`E]Y{6(|~zMXMހG9}r9f9 8W̾vI<sJkq<ҝE"eS{w* ր}EjA&G̚3@@8=0vs@8ti4}iE7?wnh&ў)Z؟L=HU# VMUtPv8dZ?_Z+/\OM[ߋ#w5#$޿\5\qɮ[[$ @#\u!m sЈeV;SK&3bzTl1VHCn58@3;FqEK)q Xׯ=Jf*?*AgXfćUuD;$q"`2ΓSpxʹE+_{VI pz` Zc BFHc742ru>Op+oڕ:ҸPo~,-_?ݼ?xMRtB|r@pVwϒݟhpOJd]3!}F ?\W[3+m\8I$}H:?RDaǝ]21_YF4i &2"Kn\&|zm$~G"g8?|cq pcL␶)z!㞴yJfNJ֚M y1@ i ' ⛞M#LX ƣTzP3Z6q{1$'=k{ɯ|C>m̟/?!] G[50[ ~!bIPLVroS~>7+tFVD:ѤiG6 ?~|aY(FK$EG~`sk60@$ =$$|gګ<%eܪpN)I* R\(cqvE]ɩۅb;{N Ԃv6B^=O?ʐtB/v`Bbқ 0c2A?AH +1{P20HhϥXr1ÓubcFyH<6GjX@`;DUWTuvN~b@?"*fAǵKL)3=j( MRp=8浍Xbۊr! ~!F'=qQFi'p ].nSǓw x-Ozs) [K)j@^G peqҳҒ v W9 0+G^%|/|%Fћ2C1= sipBFI=sާIQtU}A_zd7Vθu{b_,xOķ^7WZnف+3KJۀ4}+BGN 0|҃L TҜH J@H94R>!4x@:UӾmBf=*^uSDjN,et֫to,%t֌2֘ǧ4j?Jc0ĺpo&W?unҰBHSel)OZ$HBimr đƪ،`#^qg$ݰ9'^ M&4lD1aj< M)->U\n?)W1lge?P+3W#?84[U'BunXq>C45ݬ&tN2n m% V9ѓݏhr9?CeSr*4|og(tUnu[1?O-xRNu:Ʀ -G]7Z[OP#v,GK*yn<[KQ-ͣ˻vvU?֥]][s@Ss_.8f#S#%A©==ē?͌?Z 4U=VϮez+2>xԷu ^qF>υcJ\טy 6B7'$=dQ~5;9}kk'=ꖠDeȔT \SzT Kِ74XזM/$#xr8ҽϕOīrTyI^ jA14ꑌijz_~_t4ӭǧZ@,xExD`@#{*]cxu B>Өw?݈tTw%kWq&r8-"NF:L7ʌy?{ڐY<,sUg,PLԌJU|8<r&yǭIg"c+ & L ˑrj1/4 +Z@<?$+QVE<)I4p}уSd4c[; =;Ա8e#iw+Yf, ~o|'}mm$XԱGr>W/I?ſyQ~XZxyG=lR[CZ?$ZHȡToe?pS^45EOk%>9)E>fySh$r<~5^[;WtWzkŬA2TTè3ƅ)TS"),izOC]7oz `3`Dc_UdyeV/gu}ݟca=\c|vDrw}ܼQAtu[bo,|_`)v+h-HaVMG Md]U|`r2;R*x׶'lB/] 6|O +h,؜E|k1HSvgcQ >lpqK^Kcc[h OJJV]/kK-:khE 숋6:֒16Sr?j>Ү[a$+$Si$ذ#VI;6xI;6g3 E?5"E`޴ Q2UAka3d]3U4Hi%H#JrԨbMjw:6eٔvwDλ:0aߐ8`#xzp?e ?JV<3c8W>A3a8L\FJ!0~Ԟ4RDߵNGw'VQ#Y?-8.O>1x_~+r[$)cwtj$zmكq94(䑁\SdѢwWG蟀pW@:VO4hy#U+\*g~lE)ӎX`.NF?.=^KNjZ+frww'oμD&Üu^f+ iRӒH ?p @j+PJVƏq^ŗ$-Gpnr5X O8׿r!x,]u3>(<t2I'@&M5PO^dbM)99HOzi> w'Ss4q4ǐ*41T d㊖x?6ñ y~`WXܢއ`8;3ǿ)7&Ҳ4+Gh>v!<U2Kcs4Htw~z#pr})=ubPdHpzPW{08O>Է9gac<2@iwxNj@nrbٹ:6&đUԩ+qՄe=>l{P-jpEJ20"Z z^賴8|F;rE2BUʂұ}+&yy>h7M9dk|ٝ735J2ed^t#÷jz(,x|uH/r~붣mD(s4BW%-OSݟҺ%pU?6~hzgoz1.|,S}2Wpe~KH". gʟeܬ( n,?[#k׎1*Tg z΂GKbIJqA3=,:S9W"0Bخ屘r\G=k,~(%5Xz:*|ZpۥY?R㞵~?/&(k0?tr1oִMƉqp8''\<jO=[W:gƀ9D͞O!NG)R9$)hgT|ۀcp[ qjxR^!mIγ|UO?|seҩi*\Ljу'9O<%y.cN:Pr2#y9)78zJ?fIο/EWibzzj+S&HJЌƌ2.2X_ʲ˒ ?;V 7`:NAlғ~gA3]#zIMfiLi&B})ni i)3M#+#i"Fzex"W@'jd=ޡc1gҝ-EHsԌZynN~oJ3dgQ`-Rz0JXB RF\8l2x{[Y?0Ҁ5.6LBVK SN] OnmVj=Tq76]jc>e7já9==*#4UČ6I}k~xSڇ.{W-#ڼ4RUj&v]ib$5O*?b*Xh spҷrx2uѣ_f]x@>U'῭xLi/ΧUGsv)p:LKd|9VB𼚖ȝeEܸ'WZx)8^ 3R۶ڜU .GFľ^:f'T}P)ќu/]#f쪫"'f~EA9W#Ebr[N'8qVf]kD/&>jXޫdxq+<3{ԐҦ1@9K5|w*cV$tx#ė^ zť7,{%'7WET|/f}vݲ즼|Z?3fOU!5͋ȰJdӯVY|ymMCc I1sIo4-c&٢Q)A8x>j|!ϧ~_7 iZoiI^^4[]݃i^OWq }RRAӮzu5os!+R}O_`Gxu6sC @&Ұ@""CgqL\"A"RP sR5dyx®6JUVzeXPj :;6Vϧ?μDoJp$L=n>}n=a/l.fO5HKd|?) ƼGQ5BU)]5$g&0=yǷjc%? uFk#GSQy0Jvc_Yt O#ZwRWҢyLp&4_?rĭ5G^0NIF?>-M?!oEGŻI9lb_^#>)TUjJklIp}*jOA5zKgK>EZub.ia*39JƴS6IV=ά5YzFyGjug {UguV[,mCQ\?& ޒ0w_]@l=؋6Ic4Jd9<JtG j ]Cֵc$h =OAP[C=i7 NmCJe$tϔmð [q'ar1P$R?z NT5$b@Y=#H8py'7LBBs!\j2p:RJD` ơG?X+t|֥x+ n/y 71z+_^=SXDh8hoG^!VbrHVQ)ګ$z{V,AMuk[]n;X?FEU.sW Y8%F} @jPK})+R H`Rqڢ efm`@j02ujzT30lw( $sN$K{ '+eQh80q*NYQU3ܓ>Jd~qOK 68^ZߒFHmaV3]3sn Yk:<`}.hv6ld >uU8SwqG10Lxo#ʄ(F#5Rv$P#׊uX` A$}SX)fjcU P$,r9Ia!Npi#&YRlhڔ>#r< 85:9@"]mf\zIO]?:T9j}X ';]vXx%W o 0q]ĀL8ڟڣP"{1JUzU? W|upQ\Z-?)+}C⋮ef^2ޕ_ -#}X_:rF@rki0?7ўPz RN5Gx nsׇ_YBNL@h Ga^9^xPCO.Vߛ>_5KKڊnxcMxljG8mKUc,?wUїOsUUN畁R=0oj:ia鵬W|?3Rݸkxℎ+t5@Pco fuDW+EDП`+r^T3lgg, >vդ;qLт$q]Ox>RNDs&A&z%˜5P?$ƿBۧ?=$>QVOLf_H8I<KXY5qV "g޺{6,9w=k2Q#y8`̠*:FUw?1Ž3Q\(v5rSdTTm?w9Wa az&uTh[G{xW Dz]EZndiIi'1E.iHO4 b*'4j7oz@A)5I jL@s*btGއi'd>R:ƿ1M|sve5mԠP;~.l=kmvtlŷ9$~V-+W<|OCM9V0EZZBa|'76$-꿅eFU\ד^ZK,bL! ԢbB9qZMRfPOsTͤ q<sT};©[CЬG ۣmޔg'P+H>գPI +q %p<E̻ciV(˱᳟̳x. pCJ{5]*("s˝*Sci{k,h[q ێpOcyMr RmU!K2bO=5Y5 kRKC{ VkɲROzk=1- 0'Q23Wě.C(`@@ s>v9KlP841"E;EG467 $fX()_A& `=6 =hԱ/)N=GX@|}v=qRo{TRR $t4 b?83 ԝ.ǰ=%,{cg'j=eX?6a|:gU╎4.+$ABNAŴYp#@*dX$PB(9y[/69w1e|޽;QSw:U6MJ T%#DU=rU[TkKWzkׄլm%{ pX%ѤӼGyR2qVuJi 3 K &hf/Y! I뼁 r\rJ ?Z㴋S;t`WoƋ]ByqM9SBL׍e<֕vrdSרMe|x+b8ǽ&#J8*8B;I刍0 쏩v7H+>71oю;}\twѡ#MdwVidۖy=k, rY'' tZNqTq2q+Mh]E}eJ4o BN;ULVcӰ-E r$ } C 29zW~o լ{H!PG!=3k2 S$7`8=3]X5LO_˝XĮHߦ ӗđsM~.;+ְN_ 5Zv¾R}MndIJi9hM&^4: {!xbqH^[ ~y90kp3gxmbmsW{@les89.T8+bRpGt31ڧ3:Q1: 4.%R$\zd`б6qZY2@˟5 Ӿ5JrnS߸jU> (iJqkHP[FhpT`:UBIZfRI?HRr=z/[gEn$_;1zWֳ$xS!_\2v:{ՋkcR0^'6})L_ Gk[|r{^clНGO.̹p%NH հ=jGb#3pySkmꎿ:z7O*OFouq3$4)H`HrIk.@ӯ)- vF~Mjh\G!A}x0]+czyuxVtRw'ֺGl<xjK" ~?YZƭ6ɭ4 :*OlԾ9-Fyc3'N#=:͋&0*̝gv,X0H3wanF*]z}iP^^ 6b{ѱnJLfV7T7Y]9pT֬,(z`j,ʸ$cW`wuӼ?wS8pxiO4: gm!1)Q<?Z[9Q>\ c+JT4ED|1dwŒЩ{BJNTÑUqJ{fep)\~u&d M8'8 sڂ\ Fi2|W=GYo3"QYzUo-;V@8?zI&]3S-Snv>v1K5(탶҇N*AҸ6/<C;WQ\j$2l{t?QVpWL]nm]r끜G`?U;ng*_ޒmSQ2sV-1ftvA.#'p[SoGoSZsqE~b =N 8oRmcRxPN,%.gn#*zdzw5jݙ1˂0j-naІE=T\3q;0r1sWٮeҳ>sixAX$ےW̊I~wQ' Dž&/[c&v5u0H0z5YԒ y$3T-YA︚nqϢvڻiH39}]dh0,y#^reTl!W n58(9s]jڪ́:zlRc+ۦ8S^VLWA5C:'־wcQ|+ꝻUGxY8?xH_uC h_Hd [uoZuKhfK]Xd⻟ =2}H >s|)dE$h4}VV3m Colj#f>ZzQ}7W܍SO&R}$o8=zݕ2\{+j;HJOrb#ʲĪJj|(ךu^̨c&q\nפhndpʾFdԊThI>xנҺ7xG*L5mM&-_J{Ҽr@I))_sfp3Ͻzoت4OA14$OakO|d$3͇rQ zT?Jm-GϿ5H|N:u$F8zWY| 0@Yĉ4ANLJq6'!Ҋx''Q\uf@C}j̒b|1ګZ hִtiukHCgucv̏a@cc7ӏHGңa@ >ܞBzq@sU ䷴heuDT3}7?ZƘM.AD̡>2ZG8OcQKLlFڑb}|dNk>1'€='~㥑#(G뎳5ʼ6d^c4SnH+[PvF^آ!)?+)F\ڪm cCuҫdJ\nIȪp<}*Ѝ'ķ hׄI"G +BO\\M(B\5tvUC/#t5(QHpG-s+9(C\_{SQݕųа!Ok4ph[{;A!1M+`5$^O+5dSs0 O8q][Q-GMU]TykUì dノ\E2Wqr?w@v:ʹg5xR⵼l8$d^ޣ[(tC(B9@ g3Vc&\w9]Geiƛ{n|E@GCCC3\;5",kT{UDgQo,\w-w5-ݑaKƐz)w VI>QUIc{rwCsSƤ2p1W F.|=1CHUXXR,ci Sԃ1*H8IBn!v-L* )I%sjU !#Dp$yTMR2xle;~37CL猒:SUv󃸍ԫ'rmE#+Ў3M>E N 0 ;;̊# N|ܣ6_$j혎IdF1<hC&ձ`p O5C`"HpuӾ C{*&VgTチП*;[i3y%LpzLU-iٵC@VWS9Eˆ3x<99r=sΰݜu=Af$u iP-P~Slm= +7JSWZ2koH|WwmwIȍ _vdA?ZDz.-!h3D LK'} K^3uvfw$VCp u:}kԕL(R/Eq0!5x{C1$KRS˱ ( kjړz >dd#aR|CD^) KEא>~bs-t}d^\,#eڂzUFIV{\ -9B4s`R6k}mkU_y>^)$W|ŧns#W/3B k5Y.btrLΧd\9(+;Tt\㢭K@2)^NxѴ?|N.V03+\l~U"}cO3i7;&F;8٬hJV'gNz AJv1^k6P5B.Z1{":^/㱤C!6,צ]ת? M01|E,W<A7P?<#W?K=k_r>rsK)V r 1׊|M;m8(ZRXW|Eou7ZDz[P74+hJ#֮bKi:4I-f?O ilJ~UZKc%N03wR,R5@ qdω8Rv~6y(2܍ qږp wSY|[lXLIr$@c=}{,|SdJZI\Da="ΈH< :(=gw|hr7 $pHDŽfn~dZTOz>#7Unط2> HkgҚcH*2ҘEZd8]ĝd6ϥ&9Pɵwga P!0w*Jv3ڥ>HHo|+UMIQ$%68IJ^EEہTtSjZ\O `=@Lu.gOFU~i#N9H(|7|NGn0:f.xfNc탪%Kq=j=40˲Nmާ^+Hd%q)M`v:̆-,c>&sj)= gCxӼy nԌnmp;&ծ_@[XĂ2xsrힵ9h"9?D*?Cl:MvQێ,OOzw3{Q=c i'F q`c#i}cxe-a'pHPR~jZi6+ەF<3p'80qyD򖍼¤'@VR98[ VM61fsѹ~]'|", wzP m$Jpb8,!zqOnsPeoc)ev#f:9c(e$nOu!5 H\ۊY={I⻑O Jtq$qZ"_#989I t pj;8=8q  u:3ᔩ5qtjpTɢ\|m$^/qm.K',FBemg*mww?B4 A1bq Ǚz,R:yCU)Ok|Y8U " v'Woj>D NY…l 1vH.s5e9 #3ˁo;Gkoj!q^3HwO3H6vzf\ 1ܐ]я%&I>jW3md/`RRI\qAIX@sUN@n/t9E;O 閣J5U-+JI#N3^uwd\D+Ϊa`rwxGټ&EfCJ[.1Ht]~a0I9^<1^fڻ֨en<F$*+ir^3׊HR W8xc5-mL{m݇'R 8H忎C.䝝3yr M%qC҇:\J CS`BU&YmX~}iOJtXü@GӟWᆜFzryOٻR&?Րs^?a^aW^5|r^A" cysؐHNf~fV#X snUdS{vvp{~u= V]2=J>O=w­ mb93 -#_x[g֋&z?-V I|_M 2~4Z' sxeiKUUY6oiޟɨ  썏+w/H}'Rg>aY|3n3355߳W7ۺ>,E5R L4+#P rθdaG/r^/K@;ăU&"!".U\m_6Rɩ6/4 c#a+դ-Ě^J$K[grܨ:C>1mwu_MH\icբbQ3Ro<$|%?TrGV_i/ď7.޹a-]jz[<ܻ`ϰ$Aq?[O=n?vr\ͤFzٔ+bjWQZn]q0c ڳm bH3Fy9*ʁN[Dƴ⬘ܩ#o$ڜ[4f!qLUI r?Z^R9f8L=sg."`~Viֱ<;.មΥjz)&*f'Fdf|Tz5b1AǤc>w3[0/f$9u[)P023]Ł5:N7s H̑Jc%'}=+ǭ3;;.CEAsȒ1~ +;mFN68JF#B 1A\%3_ٓ⦎rGN»g?Z<}+D1.ykB}+JHNr* #4g<|dyP7Oj j'OJT^xUM'F竪pOM +8%Ց/&A>sjFVgҖ$u$ҳuEuBѳָWs|Cdr1P+y{Hd _(e988= 6E14J*[h8犍YAS fD߻Rbz7=&}cTye=*/|5{ۇgU*y xoN7e669?| BCΜ:hR̿SI{KؤrFb QJĉ-G"3&uMvP8&'-/#p)cr3Trrx%B'#4cVBMZ%O*@L*N?:I: tB+t#QZ_ 5M;H\v$M'7fxwRd -'׃]m5qa-U.h8%On1Һ@9JKWMX1p?ƄC`?A1? ~QeKR+**Ub.#$or{ ޶)Uqnzzz~%w=3i;[;y G,eץGh򮷦.JH#oX䚷jT8]QYY"]?33wX]ȸpɈ|/9@[rǤY) ES=9uAϪǢQ~U/NrI+OiCa++?%W!ًR*OJ^e+iɶ1px{/ȟOb+H!-Ё(*MIiWgg֍~upx1GO,el+W̋J$Qb2Dgڗ=N+[̇<̇~Bk#=kyRyw{X.ҵ7۞ oS,⍇ҵAm&ۺGq}(kSQ=c(dVރmOGX1J]CZm)o={8!5m粷J[ƐGmq#,rxkAb]K8V Rsg֐sǸ֗ M̰ѴGH>V#8\8I 8mPd`I W61گ! @ѐH=hq5[ >nd}dc<W=xF+B 2G* cg@gȜ]*T'cL ,\d@:)ʀ /##`2˸9z\Âk8ܽn:3Vu>Tw>!8jLrAf(-cG`xnCU3y<yfx U]Ud遍ԨEmҶ~QigrasWkThn62| HOOKp#d`q4%Jׁd)BAn~r@u7t3F\eC.{rkôrv&c0GktI="S)a5xZR:pm8Ѵ{(LWӭ1&Bːoi4wK !v!F1}k$0l0/ ՚B#t91\MGJs"fLY.oe[LVOH #6_;鴲W%Z3͸8,\O“+DV(yh V]nj*&/lpO~ \mpzc%ԖvbFWJ䌪DKWe`qIBUW["c2>~v V:v֝c'æ73 #mad8Ryq'RZ~LFk[ؙJrOֹ;kn}]tJ zδm.[׬cU@s@\޴g:-d>~)9'EDא ]GJ(Alԑ 8\o9\ p941hL(" ;sqOg-AI J~V`O^i%2BFLC` /84e[w/&s@㜃1N 9MN1c@uR ⥎ =ij~H^x#79HXfz{P1%rOT _nќUX3Hhsv1SiMom<?9^ݨ 9T ]NWgwљ #\*d[U2I-qkF Z}wHr;`덫v&bZ gI~𨾍P+InpG&dHYuqN ֓F5Sq-ZID97(wN88S ro܁I"b=+efr= &d[k,AdRvE6skhO$-dh'EͭlzCn5:&ZB:]SeHq@\xܬZ嵌 3py!T\XEm+\ⵛum~*}-8G[ȴ6 #9PdOZdzVfO֌\sL8$榵kت&<*='Hwv>LRjyPf8zҶ(3/ig8w TdQ#ޭrs뚆t(Z#'?_|R{C 4A=k6R-'*iUd_u7)۰'4 fКU!B GdQq4iW^N:Uxd]9늤K54koL2B~r%tqݏfxrC&Gn*v [ 3T 67bx#*ך#e4c3DXf(DHNOM$?zPō L6W mFŽ H.Oַ2}}9DǵO32Af$1P:歺TEIUp}j㊅)u$Zګ0h u-e;/O^|CIύvE7ݢiMjpf2` U!̡dt2kf<Ԕj/:L7B?ʰuzvsug{kza 5p g ]Ue^߱[ܢ v }ݲ.?ZO2H7ylU*{=k;w^cL[goR̚{+9WqH^ ?Nile=UuY'*;cM4Om,xA^C8ű;Om=^ Ґ(<ΩceWSq\iרۄN3T݋3挑kР޼8QrGf E*6kp+ЩRTx;أ<:<gӜY5yT\W] w Q+^ kZo!_r*sT%[fX[*`9SDc^ gj Bvnܠ09E'giHٻSP|xjH<(@I>_zrO99SU=:Ǟ*EdR0Ҟ##(2Ooj Ue.\cK F M{#rhm?MKpvMVǡ簭OZBpp282Lw6nHtTm*ۙHyZva 8szT nָ`濌nw%B εYMqq%+ַGp{{\lV$tЂ} zUk8v#˩zxnPu`gf?ҷTg^d /y4?δ! BGA=51N`gծv&Rdxįf8Sb}IvAA 5x]$~+/ g'9jڊކ+* yŇ9\/&6\֑9YPw}*HD%Һ_$*G>]|{k^lbi /OxT?y{ 0E8#3݇].Y77 F\.YPmÎq7#fԄb4e@;V5.l,ss"UҒzlzN)SXSA%qr9O~k #ӭ-T ;d66gT~_ap|_zڂg5yJ.pB1VtU)fNFN}'Qnr>Ρǭ_|=TF&t; T~T djT٭-09͸1:[&Md~#, Gz^1mu#t'  89XbOj Z'&?LSx`˜'M/U~n€YPEu-^=)DE6KcIs*h ҝ$1\mѶ0C5E~<t \n\)r WК,5;d km$Egv=B6\3Kʂ2rT9#G 8j}Y)E8#^k_Ɖ,;nps]q2i/1XNDgqH:KhPO.2y"'4-◊B3֗Ҟ:ҀE(4 RxAړƔ90Hx44<8 cyd 䐅grָXf98#סW蕺ppvp8?plV*Z6&hqIeaf+9(Fyͪ-yw} ?,+?:N-{Wo4Vw|\ظԃ5.2*U Ups֡~էhVLfImUIr s@ځg_4PHP3澕WlAW/au}R7 ro\6 )O`6dչ'aSvhFpJ%H {sXĶYcTd1yEQБ)ˈ)!8_$>KRYZĦ|'DotɏF⇉Rp{zR?(P kà,9wmү1i]^ɤ +đFʎG\dzGx|Bly d1$E]ѥ*&wLk`(sSnQ㞣REKʀ :\e _OW#T3%$<㢆E&K&n:@cIǦI6hg,1ǵc,<~'hwr^=x$0 0}J_.%;`v,W^7pҕIFT1[#pX`1d^pqGǴ/Q9:=F5$rZ(iC[>F9\ ^il&!P~5d>qV wPzW,VCܭB6CLTXqecp].[i s|ְaMFOQ}*9;ȗ`*s\$W cʭз?Rz1Gsa-:?F\Oh`BraTn֨[{!=+ F1}D<.W_̢f85r]40:q-R: 7pz~w2P|$ZvF]1)RE|*XKtwև=1qy#J"6xgT}.'@̷sGu =xVH3 (Dyu Ou;|7$c;jF2+da ǩj8X{E^,`N}늫 C)w@r[A^4 ^l%CNq;\y+#q}nLg=_Yp0B0 fbnt&l|zMYM(DnbJΦ3X,$ڤ?\b!,CF?ҤR8bFcr|9oXCecja.&Qk.2J6ɓюA4dX]{|Q҄ ˌՄ`$L1LrbxB,{~5V[fp:֊}?x$' ҡSmUN=97)ErO<{ZJ>ea*c ?'OSjaX{ոrR7y9?֎hmpvfn"PB9m,Y:}mG u(}ӽžcԎ#~F~ Q#]7> a 4RJH!ힵg4gqiAϧJ.IcdЃЪ4-b>bJ7:vmvpA,Flno'dKǍzUۗ+"T/2=i[<n05`uhK@9h=h.} B=)sM'@ Z\fIX4nFGz@}8jN~vdP›v#ڛ)i\3>= 82{'a^s b!pp:c?zW蕴cO)֯2\~S0Xa==Ӟrau/"USspMp1oʊϠqA p9ֻ/*|0 nwg z " >n7WS$:uaĸ'+ӧv-xi Fx@6uxPԤ5v`y8}F$$g\Ժ95 prs֬>ʠ~.J#dloX66{CүޢO(#Wu>b; DI6xaHu*UNDryGG4jc`sTxȩtG[ҩGEi\a=h[_TAg_nn 8zK26}s9m6ӂC<{H$pIJ$gTWJ=FFO@%H`GRvH*;Yq%JPF;u~tY ^Y;WƏ3$7OMecx?LXHc Ż2P`?q׭uiRPn*wש(PG-cuf9)1ӎߝ[NsVlOUOj:Wksӊ;VbȞ@*=xnGNG{3ۃ#8$$6A?ҷ g50ӷz߂T#bik8Vn»'c"Үcbw*QsM\ޤJrpt [p=R񞟍4&A$C9kC*F E")h5Ѐrsѻ>j݃GOzQS?.F#fʼn&vWEID kqӊ8œמj<]ЃOF$uǽ1s)r83B`7sdnG'p7f&L}h6lI*wYUqSJ6z\B#Bɪw`ǒx?z Y?4}\Wᘼ`X]\D'Hߵ3³颴(L; +.IN  < zcNg-qbk(N~Oj2;s~BG5m#&_ur^yT\#=3޲cH 9>-lZ"ĀB{0烉tMzZ˱foҭv=!i7v}u,}:[;nJhn0;n՚t&/K6p8xiڔy?rDZrCʱs19?:6>uq' [NG+1=M=cWTnDW ~ .<gACm[K`+F|/_=7x 8 F+ck#`h}#Fk}E'5H 9ϥY\|åD;F*1'i8rӧSSRF3ΦKu2I^BFS .F?F$Bm2/? Uߑ@2z*6X_ri&;M+IE:70ā`SĹ7HOychl,^*y8P.1r+=4x$,J z`ʦ،yF3b6XqةGf-r.Df<bWJ%XDݒX`XB LJ6{1f:F)¥Fj^mu[(@5Z^,u$D篸Z !h\EwQ9S:}(ȧVaz_Z0 vAPIv)91KSp_U"40zP掽;@₣Ӷ8gh?Ӧ7WBxA91J aN5>=yIܪ3>Zۚa:gE,ー[8ŜEB6qך" đ[I<~A_ô,vn}Ӛ1Iܜ:Rˡj08Q@2MFƜOj6STg =fZ(wu^+~+?+Y*rdksb6F4n; ,%ޭ۰~PN9U/RB2A+[*˝{H"k@ N`2ON*".HV Ix+5 DkL?91o(# Ң%m+SЎi6qZ@VB0px~P3YҴ-^&{63kGbFf'I#?XZ?w҇`1n0+B,U-c2x5v= uH'#kERY[hrH8돥OCHx%dia(\POJ$옕Ih8yΤcb7 <ʼsF!d`Z4Al*O4rz莪5Sg0@{ZPHX 4J0:֣"n4-xO 62 VU۲G<`֦edaߟ?g_цkZ8MIq?3$b$>ʷ4D41 cd6LK09f,~Eɗ~A+. XzVr>}Au Z]ƭmd~xVJF\U|5ixu݂GrY;$A5Z8q`=T6R!5ۍj´Q2?cb{1+)GPh VTSnVYTvT ,EDNp` BlWk Ǚ,bpI3#ք{K8XyK*l2-Hw "D,E6m3Wvl[Cp:.'T*OoKe HyӬr&uN#f6@sGF*JI vnrQ`q¬[Hga/|Sa`l~4\UT"VǍJI,|LR%z`u9eĕ;s18Z[H3Nӯ_¥KH5xku޺O}[ Q&P98ۿXAo8FAmuk]MJ$d`# h5{ ⸷+':z_xU\H[>Fs>Sj\dNSR 2Aǽ(sF1O@1=)搥 JGjP( n(=iy1m?=@4xԛFӶ!}e+bFW\r(>("7ڧmdddgkZ|h=^'=.dZ[RFzGyZbuKblG$1^TdssXpgp!=2 9ibʸ$/ U-n g7`5uT>mR>҈>Vh/[9ZLI7SKqM1Gz sLݞ4{Trmܷ=Jn|m^:'_V=kEΥ}x˩_'.O͈{+FDorKso2wXcҚ\HwoCpU2V;A$T IT T;y8Wn.bRF9VY~&+ }'0 8jYjcm#JhEyբBHnvf;Wxߌ1Rzf~j% 0{Vc+ S@Ts Oc4\)Dl,>b[< p;R0y7?˿! pGHJccyYJ+.jR/+}8?JʚV."qU3 m*1|M.ሦH^G48ݴi$Y' zW;LYL" I`Ԛp1֯@=BF,pb(%ip2ͻtSZƫŻ|!դgb@\^ W?ZJ?.*1HB:V4&l}Ȭ+)v4sI&Lg>12' Shdpg !r }}+#**iw!+YZR)@qu6rY3׵V"5A㡭Ev]N=jV3E`9Zf^ NkV]O4Kbk[=i 3܁*屾7L|l ~TӶE]VG+qom]b8$jf1jġ7zbhϖ{i\ Ď9řgjf1O4odqLHs rʳz2PQn|1VP{ѸiNzZDl{Չ8XS`(64r&=hl+G߃MN32;d$x)nː_5 $$ BX)BX¦G+IM24=*3ʋ>VyBsXc*eIrY !bY|jDyeۃFpGR g"AdBRP悭 a#Cy|IBgVORkF$} j ^8BUjkY *sg+1TFwvf ?(j#eے*6>I`U0iN8#x(wBha1q xv\.pOcX |ಷ89[PC[2FT`F03Vtĸ"zT! ;sRޘ` #҉G!K>]d2A=k]ý|jWbݶ?Px^࿈&6w_gak [ B6܊OC^G*ՔJu\1KF38 LRSP;!Rzpy@ƅ"?:hqҨO=(@ ;bF3@ #ڐjB ҀwlkI\10+WU$3JnH +NixՌsj J}kF4+p9bl$Q\qQco=@:2rnP9MW}j6yrz#LvqXZMđsJ)H=1n9L;䟗P g)Xg)1r\Y.oW_CO?^B3'膕]X[>g.kc%$[FrI$W%6vHZU1`Ų3]o᥷i:+5OUsӋn JcU!sjfIO֛D:VERIe)Iuw3)ۼ~YN͆VxEFWgI >\NvsZ!< xY ~\2?ֵ.< L8[:xlВ7 sTS/zY[mn=b*t+%cOSBI9OTq*\g6Wǽ8HI]jk7 {[2qifdnX65yފ>¹;Tx# XtjG Sk7P7nV9#]4cM##̭"GV)QFGaڮBڬ{MT@YČRlF'?DKoTz:UT-Tc"oG *sΚe$eGNJ07=C`]wϩ< @7&ܭps!yc.s">ws!M1/9T$H67;JL[vPzdd7 a 2FwqQ?v@:Q*+:DT_^sEsqC c$UitK rb5 wU$}e4ՆEu-̏1<]&@IHizHM SN8iI}*7 B%zP!;c櫆eFOެς }j aR$ceY)杹e\v4s'UqH%@s^sHtʢ !qڮ. lK(8) /Fy=id9 &;g4Hc·E Cu9X]zӷ|`>U8 Ґ76=) 9R&qP{R L\ҁx ӊ09=ҹǿ O5$ AX s8MXVVZ19_nJʧgH _\l~U+\yBy/IvnSK^k)$uܫ"pip*ců[XFs*늎A肴728=gPJ𫺝ČyѲuFx\*KJTciwhp{jwAw?ʨĩ%la9-\ Oლs՘${SDzꮩ6FL v*)cWF垌N VvF\bD;NzjCJ[lm!<``SW~΍}te>3V@ Wief~sYrM%9<`!\rwhs7IzO0˵p9Z?uy75" #wGdyL&3Ҭ@bx*'œ?Jx>x41.QC&G5NLǫ҈M}Ctjn2A MV܈=) FsUq p}BӏΒǓV-* zc8)艬p#5g,%=1T6 =g?-L`@ٕtgʞS.vgo^[HG"k\j{.|+|RDC_?]]A5N܉Fڣa} M?Jxw5cpK(cӊ\?:QP2iHz7b)w~^??*׀tG$t㪖wtڭx2Е.h<+=3ɟ4Uc5$5FYYHPZZ'596{ +:cŻi8 ݆? Dz2pu\knf}p4'(u!Jn*C{N@ Ǧi4~=aPO#jmjLh?|Mۂw`{xǩU^8'˵ n2ߩ?r3pűГ=+rԕV_?6G?A};UB Q9)veY26zcTp*줻c?J" db+|?:4XNA$y4IMa$aP=j mcVK:d;Ո_uFH 7mj\ZEXpk*jeyN}k"y,d=\u氨t~f3v 3=W;ޜyC~qls^1M%Hڸ}0Dw:I4, ,GW)'LU?对P9h*haoܿ-q(>P+ 涹c?y'sn8 ˇίN *ƬJ`Ge@y׵_,s!O8>B8Zh7?ΧF](ޚdXS'zU"Av*ePp~B*=*(H+*"&Ñ^A NDHT8lӣpH$(Lrri1؎M ˆ{q˃8x@S`AowW?x < ! QMMWQWcQeT,,ɺ]]qlikrm `#rj4s$Kwdݎc7 W8f lVn@f-ecnѣt&b O@pp 6W`)#!LdZp2_?TrH~3`~;DK6AmpVƚ9 j>kGCu;d6OkMʉ@L~@̼&Bqҵl1+s nCw#,bhd?{4tl +Bn+5 !@SZ ֌]1>Ǣƫt#Ӄfҟ(ܸ,ֽިI} 9?^j9K/g,H ߰1rpsZm sϑvR8.I;Fp{SLX?r;vr 12{S#1jAs攀TRH^hS.XgN :vʮzhAr孵ʶPGb?Rbo&X3\*?Q-<"BG>lc6e!S[6q#K/#X`sWY W`>*b#J~X7A!< 7&6Lz8fM*( #oOݝ$**6MZHi=sgQ,ewgiڵoqeF+ e({A} .HC'̮c'-7Sb`֣*:ցs;ljyAu*_1 EσDTf!eRyN<} ej|7@eN sOgq}[so*YNA]m7vܱ="GSx+aYbpFr uӚ"Jűךp?xsZ(?8 3J:PAj(-!Ji"<?+ٕ0FBČgݱxsrAq cvg~LGkObE#4RU߆hqֿ4d :;c#h7Bp>k!# J(6jꮨdϪp1O䎔<d0HT6sM`$SX Ȧ5"#޳V VwƷao.?' Rf{'%d/bbF&Gg9²8cҼv2ӌQTVdL # Ľ<L9`*WRtH3U@k`v&7'aP1G`Ve8 JL "r`+ &Or+A#4昆[ŋJ8q̲/vub0/a7nUl|795t>̥ϋ]v$~fC"'簪g q#UŃy{#Հk+$lsָ zס N8F<pZ cRFMtc݂,<]"Pl?Ө'+gLX1fyJ =$>FAsj>SZZu1`tZtv'2=;jX(v۸Lך-4:ǜ^ҼGIǹ H"k>!@p<:?_Fr+n0osʱeGZP*&Xd^2D`81':P ?nzBch(qpF1גjfdqUrlW*#ԭZPN1pLDTl| FY9n9Z+>ձoº8d;IJjN &+ޭWh9?.~1ۚ /n ?>@9$Dp=qE ј9~cgvr}AC `: FU>BPH)p]}G[/q))+h9#JHȞ Q1Qj9%]}z\F= 03s{8imvԐQ,osֱG]H?8Ld89v# ԣ0&I%cqNGlTt"8f'WzkXfM g!g@`WGSxvi:y$3yھҵ [Dh*uT,R@p@oZ|rgWmgŌVܒNRh8)3Ó}0<'u9rJ(\z^Eɏ X #Rz}km5pÎx=OE)1Q$Y[xLpߦ?ϭu ĭdmpx+'s3@<~ z2a~Mus'8^:R"F+̋>r8$caP"&9T-b"j>0"&X $onWvc ֳ𲡺<ܲ`sڢN5H5ۓGןuc2qsP$et'b՘d$ Vk}L֝H0 RI0R۶AYgj}jDXιB[jqrvR.SwSV)0b2G5$ri" 3)5N-&pvGJH]Ŵjl3{ʳLëVRA%9 [1@*8*6? Uշ1cl9 my5xv0Q]Tp(Wֹ 8I^?駱[tju*ց7秘x_ W3C(m5jgm6F~Rl۟.=?f/lN9U+cOJ$[olwohe/w`JQvbt$SI0'#ұti8\}vɏq$`e) z_y>!fZ``A^9^߇W-k$2qҒgҤ`*),Gz' !aj9qқzVQ.t%,uH@ )9'mŽ맡?w A:-Lj<ZX,$`򥽤&~SZ5YZ'U\D* /βu)Y#ZtKl)8&~G{S $NzBITtu-'7d ֮z*:*5FyM8\q6f;g H98jc`#> bf=X!]WpĶNid,r{xqTfBNIzFsRA>n*3#$;_LUqIU HԱNئcvq׃Nc9 {oʁ )"I*9J<*AwPltO'_9 -m^} ]`ltCybqieP=P$ A 0FrrY@1AC*d?Z%U\V id浭1H=< j'Zi`cӥe8\]qm 5&iުRD֭_ޥkɧ5ԩgg&A?odYFu'׎j=.Ѓ7rPkCm(`IΧ95|K;/Cױx[ƚn TFWwFzu26: R5r+ O-ۊ3$&֛i<X ;s߭y3nXNqGOz ǢEIyd{'^9QKo~s\U#j{ a&!sQO#Esr09{p|P4v 2;~!k>`Tȓ8!Z/5Vhw_jY8ې=qU.-@>g8\(`E8`3Tm$fŭo1EWUHe7vq\ubel:8V3ee#5D%*[83*F8^:Wc#ޞ}*b388t+81Zs<=+7` @gIpG̶cn?#،u] [ԞPse_dtadl@ qS*mL1QTnyqɥYub~c6E iɑ[#j洗٭aʅA,oCWvNpcj7sNi CfF߉Eg(ï53\$sxϭg~%01?ɪ{2fmA1Gڳ ihѰwT:[j  r*b1z SoN1]\OOƹo+@¤?o"]*E9ڤY_xp+ޟ:p`F;V7L#cңBCz҉ 9r`Hs)#8UNdqzZf90<ۏz b4 ϠZrRdC[*OH jV7P̍7"N{^%찡(WΦo+Ws̭0#e*25 zqֶ~%iPj2DUGܸmcnFo5s0,N҇jaʑ3Zl $T)XDcQLlHR̛ ކ䁗\kTZ7TZ<lCgrIީ9`p@81n\0ʞv)~ЄXA;Q y?H$Ag8¦$* vS"t?Y@<'9=&pR$!ncVɹ)ܝ-اsOU@ôtzT[>B9\J8 ) ׵1wPpQN;8i 6ep#1ӵfZC̃/LTrǶsYs]ג1Q@]5p*ˏ?\888Og'1 ܼBLs;bH=GsUȈzk?(|e7Ww2CqÜ{sSk" zd|2om8.k+Ar7 ~]ږ|lQ9e0@?Q\0M[C9lֵHm樭I} V.K2?/Z斧BZlUSn g9hVS2+ wx##5)E*ݾl}98?w2NZKo>5R?Mgr*4 g=zV94DejJܯQC=MΦI ,(uڱʹ:[6zEݝ}Ӥ}Brzyc:[imDoIlIub$i(+'Bմѿ5WP'pG|0KetKwG4y =?BpZ(=;o#z͌ӰS;X^i<Ғ58b,F<Ǿ;WyloG_*, ?[/z\4#'P{@0N~\sU0HS!=V:Sf֦ >\wVۏJT|ˌ#ǎGNyLQ tʒ.qZX@_aJ`a4 E(ªO4qҦU A? 'HtӞjh*o*'\HC4dgiOޜ=^tPqN?gw]H;zPփ[Rn9+ܾj0MX$X Rzffma(%KqןhuhL`\< 4H1 ޲TrPޠ\bms j].;t:/au .y;V}̫y+&/ /]͎*u$ixd16A z4$ZfrFv^qD6=4w%7#v~VVH٢*WlҰC#)>ި\<1 ٱY[[۰I$NryrLy?ĺƆ f-+/$bf[kkKÜ*}y| luyw4O 鉡jdJcJ w^aܞkpXGWۧ=UYE6Ql֧|][+fLwUN#ߩR[Rfte*!0>rvG} rМĄ{`0#Fhry xGZ?7ō!\ϐy|3\5YwX㟔 ~?v->)?ƻc˶1;qSH*G!2 n sX*"G'V55wqnĢ,*Vug3\W'/39a'㊖uE n\s\Ka.ҿ&=)F7qߚWQP{zիOWk +OAsc&׮z!x[>F7=}+|&}:6InBĎGK_.0s }9Z]@;;5GJ+mx+ӎu QϘkl0h$Ldƿm_3+Xh+aVeQ4őuِ5"E9c4^%d%!p0pTt'r nZ[])G!vTmҜ:}xj PB+^*;JCҢ Yëe>ehʾ;Wr;h\G<15M$_J5H7#o*Ǡ8pa+\b@;i!Y ޔH:@sR=ƩqF<~FŔҬ$2Z+\'I2+ZqpxX@zH": ?PY] vFw(X$9?Z;+kMoPwNW`Y@b}t^7m5+?@kNњ飬nr;^d{րT g5p7q׎fE[v+*8曋3oJ$$ҵb,>\s6`]j-6N|ZǞ 8q[vqMU{2-Iϐ~l>|g HdI G#5cWt%djV3Ii%KMtf]"$^Nuzͱw?Y=9a 1Ӛ,rAJ)KlUV fB0C NUHc{+I;ѫn8`UE;dԜ6/>#qG~)91$(\3&W̏Cۧ5(=AP@ <|6F9b `*!JKNd j \%[Cе*4;?tNa;xS21שqߓ޴RDYy 1Kcޞ븒3E ڹ-F3) ˕ǥ]3~*N9^4"e"8jX՜t_p'ed97M#̄LNs* dJdPw::jBQ5r#RoF;0{~D1c*\?:`0}@5$y3I~80Bf8i[扝fbTBPT,HX8ˣ,:fە*]|AoAjI,J1g}!@k7la qVqM^H d5Y0tR*1jxwǽ8}ii!dRғ4'@s-k]ؔU:52mKHa ƾ95ݬp43Ʈ0CA*Ќי*:t>Z7ɔ^10rEzs,\'d=j4i4B>zdp@[]F0v 8$ R*%ʷ*q՘zuƱpۻ3|O> $ R?sUt;͇lפbYA+ފ1կbxƜUj!M}+)]cix̎sd7cZ7 t$d=h38l.$4$>|QXrqNy"߂`WCS$7^8,Nzu|pRHKGOoֻ#1{]'H EtWsJNJS@[3U$|OkW3,I?/^Ukd G_rqFQ,*lcxol< myմmo[+)& ܟ^O/s ;o^9 iIM2  ñY֬SZz}jh,0yBCz9(4rGjL<A$bh!1s1¾U3[i~TQ:w@nR0a7cG0nm8Wx% GZb k@z ͗/"R==`5 pT[Yn=kF](1f6Nɏ# KJ`\5zU,lX]''J*M:UL2K6Ɵlۇ<:Ib] I9ɫX8wzQz$WLJ@J{QNic̲v.\NV鷭ks+ `8l3ʌv8&YH!y nDa%wC1\ (W_5ʭTsA,{ In*b:tE p5Bw^"p.[Y7PnjHAQ38tJ|wR؊jBhQ?w9'AR>Ɣ*bD!*>b1 gv+URKAQdYIDq2G ^*}pUͫ[ދUt A1leYֽ qH[fudT#q2aX]wscgk563&H7TC%;i. .m\L$X/ ׃\ؚMЌd1ӧ-rIg$߾#>0zlsXtyK S1ƪ kwI+>< XCiR=̉qj([GJ= ;]% __3ger ƺ:>1{W/M?w OZvǡac-DItU_x\7s$vrgoZk Wv2Y\JI5i2xSH ={4:oYip3~Ԟ[zU$$1uiJ#1[{kF ;Ns#0HUxN͌?曛eĬFB/P2M¬_,vvÊB19M.M-Ec"鲖mŃ|&Gk|t޾#Hfp*}!ն=ALfק_θ(!܆Q~[gE=3S;11E?QeQYI'6vsEF((tu栕1Oc[4.{ P2k:~DiANMyt "_/WFb#J3wgdplPqaZF '[6#8]zŻITō[I:98犒Pq֩6Y `ԲVH2229#J1*GPь&xDxlc9\zzf^pxZޮH5 1 [ܣFvx eH[ G!v B\YHixn;s]1Ve[I8)nꄒ .{)81Lǥ)3j+sTCՁ&XwP;dLTUFݒ9윩4 \ u*+pӴF:)Q\\YTWTki7q[Bwgs\snQ8#KomfIpHlmUe[%')"$'*8n c>?'Gr MVx& UF A~~41 +3W@0a(J{uf.FOIpGL,rTw$au#K!rsҍFU9j⹥FG=B!'=?K0nr lr=;4ZQ [ܵg!^NPN?Z1Θݎ'{Y3A11Mv уj9;d"6/1Qi?v6Yf̬W'/72 90 Y$Qy"0Kn'ߥ@tRlܜ}{Uc3F*w:[)\Ȍjţjr:U`68;ԁϗU5Dr ĘGn$`@CaV̼?F i&ޠ$~dj]J`yl7jvsMF?29bW@N+i9͔0u6=#})dF Ujղ)2:)QDa#U2xp*yHsX/}+r#~sPJN^Li- \3.y$AOXGo޾b¾dWEX7 lT*s&v*}iae$qZy ㊗ZMZqN= ;%m׍ak4R;+g5TS#Tx'n[צ2R#& /}f+9V뀇^}+ƾ(ZEeS"?^V>,W|#<)ծ',I]ł>b^Rܵ2ddfiy"IL~fi/dX>+ן®M.S>Gpec멭ng9Zi UFX1<9TuwdY6Zrc==w÷i!'o5vo#RdkHmJg_-@,yΥr)[ckkWofi9i~5}V]6Ɍv߽GA׏z}z44p!A[ţڥ3+rHϯǦ|n8 Jy`m wQ9>=u AA9sQKi+-9Y۴VR`^V+)+_[>_+͸B gQ>ߥwGs6QFHMtfsNm8[iEo޼px=-77Q @TveA^H틧LV#psҧBդrz?G sdY8ӭn+.wYpu?j. CJx *z "Qu@ޚ2B=jgb7tE32 w?Ҟ 9J`wG0hDOne'D_qr4ew㊁Yr)&Jv4l J "sVIL 8dCT X@!MW er=8';f"'a-c!mi);XւfГ;sT+B W|@s3)nG'VZa׃ϭjI[(p*Myʌ"F;뚴BG>_4EMjRXw5DD,T"tYg P3ӠF*絨 w2*œ +Ǚ'>R9k@a&RLֱ4ܑkh1[)$r::ֳ0'mJ?gx;D91pŠ0bzES{F啎6T+8ѫԡ&o#>8`9j~##RsՃgD*1I85VK cqӭ\[bilcnF]ؓ[V)r+Vr@?p3R YeK d5; Ja`b8df'F YpǡnܷҕQR&Lh@).IXfXؒeoҦʽB-$2COeJ4nJ}6[ҭ"nSs۵VoNkfAJmr}Zѥ(#v@?fLp>)^~m9dU˖U_r㧯JZfus՘u<_5+kF6B*++$pIݱ$-zId"ݸڤnxNVfAjN s֫m &Օ,vJcL#b7)t_SV*hgW&Iɳ52]!#XgkOqֶmVS؝{IixDm/*,*Gr)|Hz`|0E9WPenoަ1Ph:H UOIS)cԋqS:%p.zҭLQ$L.\W`, sɭKIixQcMN<>c"cŽI*Ƨy+aRˊ1u;lGMpGB=OWn!G&bkBm_8uҡnWB$EPU09nrsR@ies=Q!_zr;.kAoNPLXF0G'%zj."l lsK4}ڵA$f[ָ<)8$s}st[}y?z贷-eRTdƔM^ƄRF6׌Tng@ODTKq+@uMO!K!SR}.7H "JuC?As]j A(A5-1orv[D p 5bhʱ Q7$$q@`1VRO%¥Eİ#zIbzy0XɌ`v›JƴYُP@.gC$*jQAm!]!\qv\sޮa3 zj]^YdVaCUMoxCBF7'}܃soAާJh^n쵡i)(~k1O:=x>xZhXpf9z՛ N֩jCIlE(]\ϚDԩʹP8ij9 \zF)J_ց"<'TљOy~Km IIz7g4` ˛ .OX5k5cc_\5#z{ bdgw5E&TS/r;|›i2c#Zw\}݆:ޭj4Z憱ģ 'Wk OS 0 G_׷Җ#Wb 0NQs[\(RzqPǖzfv Na36!p1ګ7cjYvݏңhBqZc>ҩ|_@9^:U}:#(8\9({ܣL ==+az1C k$`rпPOʑ0d(Cpk4Sc^C~rncYc<$4h`i!#gk0$W7 h45Y5wgM53ʦ>\㩨,wdvA݌)y:ًkL( j[bĬѢm~?jp RԺ1Zalby(~;xcbOYb>j}'xB;g\m]&fD6W7nCc!\3T IQb8?6)wpTjIUbORoRX1;TUic"#(`H#zS#Uy)蜓{{WhWf9j5^$N)44 s P'ГT5kO0$GUu( /ƚ,+{fjJʹDț{r;rI췿zhbKu>z6ZnHX~F 1֞5LX#Ov(U6d{To!JIɌ^Cx4*,~@v}ܞ$LS]`ώ$QrB\ǧWeP'sUV U5,A rñc$sP\k{ ,>cU#a4t<%|AiĎ!g *(Xa~%/bzd ~Ŧj1PhxCέ-6 y%d]E,5X+++}T5u0kS 9\kھ0F2ݕ*rx),娚=\%dgm0Œw1_1=劘-$}犒3 =p0*g%܄Yz &[ Njr'<SUWB9U#r O1Q:6,%*?NՔ:x<4b@ZXdߊY ͹*Qyk=:$f`C#?.H^ֳJ*ķw(c5pArˎGRGn0SWђ(P9H-c$F5-[Akkժψdmq<9(U"i.83#>.\(ܻXFo/{(z}x |/.QLgaZi ]$;& <7d_a<+X,cc5ڊE*Né5dIo pĊU(N=Rޗ<^: Jzh籠#o4sϮc;9RaA!؆SF}=+_'K4ir0P G qצ?ֻV'€M!<41Yf8_1x@֧ MϢҾj/R&wxIs<&sˉ{#z+vZw`Wbw|=Mۀ'5J9РFH5̝`6ݧ[ѣQï@'ePI+g ֻt]Lza'2[ZYItGNm'bF\vdR]]/Jlth9$j#$uҸrQR\+W".*֗\hW<@I pAgyNqؚ?Y7wJ Fu+ݚGR" +hi29rO r+R-21?\8;vweŸk:ڇR[r1Ӹ3a랣)tpHsX%98i gN6f{i'r3txL qV>S v,jf;F,oQ4"TS->3K^` =EMثDWp;t[80n2Cwix0>)eaH>Lu$k=@U('3g#H2D @X,0q[-C ~8NƏSrrG5)K#=2&>އNwo BXR:m$~uSO9^9,W]}}bo)x$On՝yh]ڒ֎xdO[LN=E㍤4Vr28P$fpov BqSYg99=,\&fr@c=j2}'a!OMCbhxwH\-DB!TJZ8Ҿ]uMnCoƽ~*:+FU`xk $a^/~GiZđ&U1WuwrOl: /O<0Rۉ*N)[)P@^c𩭭K,\,AguJ2!UFdCXly'q9>՛W(\LKHQ\/E>ӕc2$8δL-,00=jq?1>kWkO,dG&I @ja(42n%mv/l'VaF%c$,F\L_R[X o,J7Υ`O٠kg;l{j4E%^jy$_OkҾxB:6qq#??Ӭ5S%M91[Wece(ϩNعMSV[VmVVqaTU'jQڕV<8hӀ 88}iئ~R;Rq@Gwڴvwc#Yך\mgӏKw9I=36ۑHQP6?¸+gM?B#6Xr$@,-v;\Om!$2ʍa>~^fWj=?j,8Vp;~^ڷ0> '8;3ҫ)+0zQ4llc'I\@%Iuħv$t.ʹ#-rU_Z#JFȇ+:+o>.OaQ-7)=tjѵ%dgj6<,:ɒfǒX{/5mM>X.',xФ 5St0@`1ƭDOJ Jv5 ܂:Vl)Ul0upjP&:RQFIXJn;Jd֬q:6+R+vt$gsVgKCA r{SeGaھphn$ _j=N*}Rw ܃ T;E@ 9S8]!ʌFyh+v56mæ~lGH%]'uU:$W.5UvҮD.3VB$l*GlQH"2Wm9Bf= $Cnajr .SglbFI9ϗ {wC`2I=*#lFcޮ+[g{"9bܬkdʱNO 8[wR1kgI;{ggB{sNeٙåEWp8=x6[er9RIݫd'rzq>Z >AP1lfcV>Տձ8"0xӑj7rWz0sPtԛJ tW3{끞 VB* NۜNFc, Fm6TArIG+Z1uV2dUv9=k`xߩdo嬬xL8, +jzcUƻȳ:&skf ǷN.fӊ %X`Wo ]?rY5^RS6IcIs)'E~d" - \7==Hk_OM' GKm\HQgO_ZaeQps sҕA'PC#3ҏ!OP:Ue:sڢ1]H^ _ iVCs3K"bq۵5!8Y Oh}LtN"N81Q3,1ӯԆO('p\+F9Hw+`5,q GoơETO5ED$/;O>)'? ,ZHdRq˵}*yJ-2=OcYz,je#'MT7!bA=*-cNb 6`$on$ NmfF٭e?*x@`98,i6"[h\5OPKh8椻brֱtG乺ä[f]a5c&0M6#Gz:{=kFIclK:`dxnڔv]6cc=}Ebc1> ? rP^c-&EbGc}OhڗS]$sqT{T F=1x q"ƘwI) SFy&3sּ4<Hzъ8Jʋx:p_ GtIĀ?'h8k7>o֭JBDv ^G[֪XDzAf槑0p#qڻl‡R1>bb֐ pyqo&tL Œd <)_>(9u~:/tt`p̀m|r 8OjlqX o1F#j"7 MZʭ30MP* t`ON2=gS-ū2>2y'\Ԟ8WuwihߊH@^X(ZH€NK,&4ءrs=}]p}YJ*es <5*Ȼ\~$~nqZM# `Ӡm[V_3[v#LP}1ZKShG1/F֡O-b0|wfm'Qe|>8(m4"SqF>6 Hκhn+I# K^0U}9f`NH 9SaCt+&7jdn<`VC`g=1T.uR3IhGch̡xvU#1旈(jD1gMέ񭃆# ^?sp[.8|O3ل1 :ۜw]4sճeښ'#k#TQYG ǹ}UX޲ͅ8sXwF`V(ڻG'T:[#q*ܻBl-מ8cJPGt&r6+6@#)qnA/أZ!ܟ?HSGY`r)8Ycޠ*Hq" 1ZW|`H:f7jdbH 0zЙ.6$ax|Wvc*D ­D뵀9[# 0_J{[J"23qI2q-'YZ ۃSQT,IR3eis (HOn-,*g%;*/66j`GZe"6dj]hNHcTa[~HӵRy!zTv&A GR{YP&:Pյ6e '|2r\#)qR*y>h J_!cQyWP.G_C;~U[Zi"ig3GS'{}ݺ}morrDkK|Ipm8]J|GDX5H1#oBq^XǮ1qPr>2$8IE yMhELap\=V9cDmKȬ`Dcܓܚ_\S1O\#4Hأ1J1H jpT_@4 (ΔuQ<~H}yg|~P3#*?޽7ړBo2`~Bt+̑I?pb>#z#:'ch848uYJ3¬\ ݴ8U2/G\. &l y_Z0>ϷY/Ikĺ1'br|~uxW>w6^d}Ac ZBw?JADJX7x>b@=OeFr.7g?MuBѰܽVCT_w{w <ozu [ vc]vpINKTݸz3)17֧EU"\-ىd`ǽ-FP#P8'I3M4i@8T1)SZ*5V@ V|;bT;<Ҩ,Aa^ 䔰8 zp)c{U$&fO2Q~Ԛq@o_vI=HjBK41UD;fXH.8>yo֟/17doNI2ь~3eNIU%YiNqORN1QȆX}ӜzFBIm . ^DVcR1Fc$ߦ?ϽAF f9>t nV7 x1cgvTf*x>mOSWG@O5 G#3׷zf\G҇M̤ 9bQ"ʡFIȬmZ5F pl׻o1v;me9G^)C]0 ʫ:v?֮AJs,b0DG?TŽ6ur<;T8L3QNSfH(Z~vCc 9[;vBz o|s֌3g<~׼m,]:;u"V2]+bˍcVeմstnڥW ZA[o+h$=@J1\Z镏X挎Cxn;6[U)[1&3cA/\K{v9T[7PDO 5ta1 8CDbu0ʧ f8jq>*5S{8I\awf :h]7F25 j?.T>w۷= GJ ?ӭdHC־ 6o]ZPm0~8$]ږ\KS6pU-n["J` 赟#`y랕FHq ֛P;/T/1Tv)Mv7sj@yXٝOݬLk w2|$z`\Ms)?*D?HX5eAzQVf ]P[Lvk6gh#JFʗcsBW-6ᶯVkB&2K {xg@wJYt|;*'}'P팙9\z VwqZEnYÂP}ӟkbR--m0-xSھaLiF76?"'G &+\EϽt`zУڞ+QVG#m*jEMU)$p0\zȥހ2 .yH9=){R֐Jяʔu)sE(;84@恞] q<̭{0OS:i,3809VZ-+I$+.y;[Ĝ$ax5䔖2`q?NI 󲱁FEk%b,?jr@FIVt(2[܋ןf0t.i7ia'ڴ|Li23׶Es~tY0=xww:tC=s꬧S<ñpN}uQdFOL7"hپT%x۷JHV&vqbDxj˹@'w:ֲ,wJԕ+xF T ٽiІc~@SxctH5{ zU;`Kb1,V0}zzdK89R@Vr? +Ȓ@G P(ߓ`*]z|5Q%qQf7q=kq%E+}VFU ۷=kb]t\L%F#p)PlL$'BT͎lE|n;}+k@Gbղ{rk#m4vZu Nb6rI$މӔ4E$둊ԥuyɌ֭啬6$AG|ۏ\i$ 62^0SIn9cI\|lǯѳNY_9'55{8\he$s]QJ8ۑ>GlFV'_Cg =9N+cIԷ@er|ӥWծmVg Ҽ jWic][C,[i8$lXpVhʎxjM* Qi$t);yacW-,`4n9'*0֬Z\B0<}_XjZ*%u敭UأPd r = w9'|fd\z皐Z 2GT>Dǯn0N/#m$?e]M60I|-'O]D$nȨgH* 暑.v}J|;O߅^IϔU4dmqtѓG2&\/  |ɋFPFX "1{jvIs,fsz<i8\jmnk u>dCq kamL=򲫯cRAxύĶ:m*-*ZO! I Ԑ;O%*ݽ 7v`H?4-.'d<{}{T7hWp91'[{[^͓֙%ÞeO"i"Nn{p+Y)CŔ,2$[p ٢HgƷs]K&]rOOl-Ii8Z4kXwb˄b0r?:-brcgoʦEVQ29ϭ{75@OEt H;t,B/#)%rO00ŎтGj)|\THL"m -Յfenvϭ2UnO^:S䑛!I遟Ϋ 󞆗R䟩tpf9Y3dTS$(IS1+6ca䝣-opX!Uvta|$Ke}szcf6^6H9w'L Y@$w } 0H6cDsCNUg*VCsڱ9YUU(L޶gvt..(Tw w&z>,݌妧/b$QCKAp޲/) 7qtG<5sEyX `=O{'t5Mw,йTB)]h-i&4#HA~H1^e r^uKI3>).vzʺ[pwa֭Gp:D-G0^j3Gk_x?V)5gb1Vew y1`z&e"D鵰M%2m7QV͡g-㑌摚X?UՉ!`]; ϕ ֜D,?5,* ֒#e|~zO1128}z4B1z;GdaZe@$c5țu91 wB/ +Y]h$64 tsϽo" :gֹ[Z<3cO=kԸq+*u ngr.XO6[D2HY9cNU+ҡe+# &LҌmv]NnT%.ٽ0~U>mڸ\N"cJV4rn23[{Kjqāǽf [C&$뵿7hGQbu"Lc?m8)8vXAHJO&cВ[9 .\$BFbxoC]Dܞ _2'28M'2lɬ٢-=y;_'ڃ81NO8BrzӞ4b?cE]%RwpP??tck\UҙpO;)rEm>UK/6 H5|`G֒fI Gaޅ-̈\˸^+# tW ls)y h>y}MBfMYJS|)jcuq,jv'ֽt{85Z?r('翧z} ij0NjdGɺ5%1*0 t#zu +mkIl+dGC^)O2ä,63F3\?RIU2p̰#0N~WRDS"i$t8xe\kmѮQK8B wU[>;.;bS+ߘ9nH1DG*qc.tuVx/##=saG::! ֗S? UqOCnhUH9=p`Rd˝i?f@Cu$G{t5l.58`B[2~q:6b W%bk&? ]/_jR̎1䝧ֺna%( ?,*ƩėzN 3e=+w!fΉ#B&a`^á8cX )}s#F_ 갮s%?5ݥõʐyk-&U+n =:(\J@7<7:"F7nqYw$-y/SZH,>w( *6[33xqޑ#i;VTT ݷ@>f. V eҴ\EXqTZG JT28(p6N@vJ PņI=1Sv@G2#FUXڌ ,,@1-7z*ד՟vL`g qhkiWg^1ߵS/CqdhC݌ ʍ/%vҨܴī:{F?7[2@+м<$R665m$Y2>³A H2@ThtٮH46 NN:Uȭo68k:TUw"@ViU"4/AWmYP` 4`7N 7`b`QNq8$'~l-YOb8FL:&ѱN5gep&j\g>RD]O#5/g2ʛ9V3oGOI$\\ƿ;ny;cU(`>ꌜgYRi|g\yȌRdh7s[BIY8=zŘYٛʫi ,G,b+b1y%%} KE NToX~Feyy f]Q7أ ?mHs>-s>?Z,v2kaJ͸IYV֖^`֎^INZ|G>a}ݸœ21; 30:tc= pm]lZ9dAqjLI!H4eIcVʄu<ȪXd!\p 2LCVKn|R@?Wۦ@s0Vfz05* ۚ NCS #p ּ:۔7zgYKH%!簨deFi+1cRH{QWh prsLlmni8$R6S\iFHZ$H*cEhØ21#⡲B[$qapGZb,iQ䟭gϱ*gZ׻`gpdVe|fOhh>u8rŤ}Tb1M} 1l 8+s9kJ&NDd85=7ën[wVo;N׌W^{ԊZv1ڽ+-`u֑<2" U*uk;/<Ƞuɦď ׼7͌Re(W+ xnXM2DAzsa;C=ˌD7cx-2Y$PsWGbܰeK*b֖khp}d~AEQ"Yt2ߣ3/JӬ i%[fe t :]&TKŻyb"Z7w <QbrYll.ݱ c]4^UB}.C$Օm^\jWrJLcہRjXe\ rO~?V_ BJK;1b@vX;ײ1wZȺjWI!6(vcϠK$\4>6mL}_TFB5@( :t!ʬpnNz❏Nh@1KH)P4@ϥ9E1 jPsN @qJR~@c(PO_ 9=Fx )F=)@cN ڞڀ<2?bjP.5A''ׅMS?ʼnLnFRyrw`~(SClDzd$4TV)}1js 7UI;< (➒.?½_`{2jA{S+R OۋpкWix<8+L*L\*Z܀L,5ˉQfuΜdD ❥i隞棷1ds"^FX +$zңwoB3Q#r5E(aJV1f[ fJWkp3U &:kۉRA,Ii\U1iP"XԞ=*KFi H7i6<⩦$џkk A:F_JiE"HR[U'acQyFzt-nPdwrA6HG!^02\w"ǀZ5;{ŀ }{u5[1ǒW;η9W@ 8VRYB1R4ݫ0Ͽ9Rћ=899I +"ԏTE당 #Aӭg[YiVic%֣#!#hݎu' _v Cc^a{G2_ZE\COSz#mJzlOgi2s*|!+sc߷j{ږ!B! (aS+F^IXYv"#[7/# ÎJ}Xq_ZҶ<3P%I9݃鎵x1;Ag߸deTA![R 8UP] VA `\%VF۸WU^\۾QXK_h['x ֢l;k>tQGS׫Ъ?ti{x vh vzq\N 733߷&Hs[*jɢ\73 FuӁZ}ӝ)IY$8BE˱`DO#=N 4cdeg!zd\| b7&0n`x NQj'}r}GJTG誡T//nyQ ݊uKC{)[PƠV*b1n^}GnX\5&E*;>O>['=}k=V4I$vH/%MpE&)I"׊ ׭h8lc2/o1N-E*Z#|+RUkkK')PRΉlaA^t%n+eB=u1ud'O [Bw<͎Y`O\t @F>9953ZM H#cW_id"褓d$}曧.iIm-M3JDs$KtxWVNb@ilU2=޻KVтًE锶>F(sO>Mvu2Hia|gj{aQ&"tS'Z8u^SrB{Ԑ1~F8L' ޵qQVG4zT8(H+Rv6xSW!Zxӗ03)\R P8v? AN!@J(K47)R8>=ABzӀ pBhPzi8(GӊQ(PD2N0/!3N?\WV5V—ݙq9zg3^w9~_rGJTQH39qw!e$ y-9"YLcqP<=~kذW|j+%0zdGA5~9-\F$":G?RՈpvҫN9Z9gB<4.U1ؔqqSs7}j]H "F ܑK Ļ<֧k~OmǃU0\p~*> \ݢGP{s޳I"b/#Z|2xz$&'a=uPzi1CҚBl$-ך̾3i`3`(!Q4yAwRmlV*A :4/ݠX%S/aSA+2%BB$ʱ B/_82 SpAq)=\s܏RE'1Ga[JKrQiTtr2?1i(v/֝c8Ȭ ϵ\ج3d(nj%՞<,a_C?α`6gmgǺI \ d*7)NHejj\`{ζQ-Y78ɬ/jI$Ј2Cm:Dn݊\Ǔqh GYAkz-癤3dPN+*K5!K;y&2}]޹XEO>ag*J7dNAsr7ylAWHpr+biidg%v'abS 7gs;esr#ST8‘r;U+26B @~v  1*mFA^"IdV\ȥo'jڙsm&HsՎjƝ~Zɑ@*s!Ȕc=>q\ֹXXy>>8 GDw0V6IRc?Pkbm#vо1}A F3ZIg,Hj%~@A"[ F1Y96{0˶5NG꿅\SӰ"zMvDSZfR{ Yy`#r99ȂC}z\,.?mc"e5RSO5 {䐌S-uytnMd?hМIw-))9X ~zy8 1Zw$Δ0ܬǶw`Ж$IÕ!zV_drЉTwqT`hG _}/sk)2(99*LBpW9?jYo%V-̨Uơ 1Վ4IݒF `zR^\!a_6sT=pgק7W5]eb~1D)ɝK%,p+ڽtIJ ?3G}vpG(0U:Wu:*:&)N8* ՖjE4 $эp:=h*fz`o_j8 wZAHn2UUǧk*.d%M1QI{ +Q5{I #TϠy^(%RI 譜c~UYo C(VQ9J~WPh[7XV+J UB8qJt`(0sօc!Gߏ;(\\ּ6ؑ!*Xzs^|K6!"%R$ 篿zF.ndvQ( |01NJ+ !d2?_W[pS,f?5Q®6#^4Nr.2?Jc>d*vGJqh8YѱÃf;HXerW!W"))bBzj*Y >:-^5c2H6 Q!h'<JJʞ3Vl~qC#Ob;hОIn" TQG5Tb;c=FHn=jVXJ&<=O:l$t %*QL6pFTZD͇7b)| i*,lJ|?Pq֬0 9'$Ѵ< *rիm"`XroaE.KMIHG'ViBZL`g̐OT+glSTumagk4mHvE `_4[3,~oP?Q+*Cmp!$'BIgHTn}|цc8 +[/ݨIETm,Do}I#(*]YLG9ƌB(\sc$wVZ\t>Zu1vARvE6)&Y ՘.k7qDNcgtzhcCuV(acB~#؟l|5i{g#irK1{j.@BG SHp+QVG,M :MhHsM"G4Ls2@qO9Kų_ɧF^pV#{es~|_iF q69u,݁9E%#}j9}벯QzM&B=)9\b=造zO) 簠C#֞1ښ"yN9))4t:HiݩNvzANZpi=hN4SҜ=)RM8z4;H3K:~>ȇПz ^l~RQ'p '=ֽm +؇F5qw|嗑9qb~#z{ ?z)̙bZ>IW1b a yO<Կf7ķ!OW(!HbOW̐tסw}*0sS0 ؂l9_|A61 5/'VO q,ֹq_ 56ڢHҠe K  ܏jDx3Ԋ-wboc.ERʇ :`v*wUW)omE"#L犓*߸$dDk W+X GsCT*UHaLL`L UyeٸGYڂ; lcp pҖ̥2x+88NXRJ[q][, $hұ3E.7+q֡8PEe=23ZS OSu;!F;d," S(Oj J=3W@{1݂:+Gl9nnmXGIa*,!mwu ^s+KgcEo5z}zb kdI6'ˋ䍢p ld~5Czqj1 pܞNG'ҷ  71ֺyNn`EϚc,qd;JzUPJբif!bG6=cl"yT ;{m'i=N@Q=PCFWH儫1`MH(>YCkS -ך̟T;Ҧe ~5)T,7ǡ56U +r;$RfVژy44%+'#$֏;ZDj&>{;5KH[v/CW}A#Q4kzTaRxcN֜qsպ>NN}1IYhсšz*n3ڟHiғsMҐ(_КhWA#iO`=h҃u更h(qڐzS\i:L@Aœ1@ jp"9ZU 9pi1N8SE8uC)8((Ꭲ=Oҁz}1G4{SiAH9ȣ~>EݷuC#OT͑GO^1ֽ<`t|z8 2W Ep~#z{$>hp0a#Թ(cCpbar0~7e91nc^gm#; ~zw̘98&:#>cD5&x۞ձyyW͟Ą*.mQJ!_JKҾ~.`Wu6sUiKl`նU)z5x~[)\uEc)4@ͷ?Y(Be`[r)#(RRycqִ.m@`*7LSqZ0J>ɤ[h' iUXy+ʠ( -,Q"`Bi\= c u2E'TXy;y⚪\\5A}>7ȝ?*W00z FM0GՁF9JJFU܄*kbo w#qOd}*R8 Bdk>ʲڙޒiN dҠal M"[)jIv$=|cGZk6g* ڻ{UGaĹ,P\8A&yWV8Ϩ;Pcgib!@cN-h5Kh4G庶цJQ.txQ#=v,wvFX𒟔֤d*}4Kqc6&+,0\ֺ$.ǧ6~_ʵXɭYϱlg!c$#9S0yjl+NFF]v?x0H)&08EqЃN5fi`Kd9)Rij'5r04d8ӭZ =˞XduD +(=VC6r ]I,VΛeƆq2z/P=TNc9 '1ZT_dZ:(0{VJAwp+b =+CXޗ9=?\ ֺ q8?ZĿtނԸKysq4y]0qEtDסsĩΨ>jOґxke<G䴁Agι Aney H]׃#?g)T1?skOZ" mej]) @LD<)0b,r+;,\㩽GdVӾ$tX ֶ\|ш((<CSA6e1{SNY \sWaM +4ߑl]B>c* R: g1eM^GiK'ǁ\ާ4wa 3ZמÖ_NK0N2z(ߵŦ6|zzg(Օ;>fu QƤJ|U9ӱHӽ< bG֎Zqt `4#4=3SS[֐ ǷMm)19nœG8G^i@9(Ƿ)zpQ_5s"3)1N8)ڐ pBSxzԣ q߭9~M^Ӆ/Zpϥ8f8 h< pS;`J3ҁ)Z$uց)gΜ)~A6(qj@H)H.s@uA Cm&<3WFPW'@>>-Fs`#6<)#?|F:*&j8ʌQ\Ŝ"prr W̸oSs1H¼*dFAfDSvHq^w0{Ib} ץlA^NA bD疕1ۢ׻zFɤ𵮠gvxOƺt߼&XR1gi=*榍XdcR0;m;W$sEniWQ"kb8~|猎bF<7̧#3 3Ԃx"o^i)ϞT4g)Ժ퍱br7#+('dS5.p@} 2'IIIfQ(YnV\q*F2H;u aFO[^ 8; ˰9g:8؃[M>D7 0zTn'P(lp l#YV`L[#gMe($ECq6Gb ~hy%QIz*E2lQYRDK+ #4Q"tRpxeJB*ʹ\dr*7OLS.>tm*BQ֦8m1*#xlam# Rٝ\r: v]=:U~VP94>RO遌bBr0zAlw>|1JbsQ(Ē`+7ug<TՇ{WDUֻ^?Mԥ#Mo"Ysΰ# _33as}FRţu&9_"V)2GyyUsֵe:Jh1# V7Ϋ]X}:*R1fOLZ*jgԹB0I?WG"5 `pi0z3@|\ c=W)S=iu.3Rn&yDd`{}/(6ҕن;r1U,# zӘKw8{ni$A+0 h0X]3Ocb9+HmR qJ{(5W<*V1+ݑȤ!l`'Bݻ87ݫ% m,x?J  9ܪ0S*ՆNE'ΚbɒRXrMK#̾f3%l# ճ{|e0Ndek?Ji!Iy)cٔlA5l88"St2Og&٬lvVsoh0#Ef1*w*=b5Z5WWOy9Vݣn{.繶K$xSwdT,q#q'Zu}0 -@^֮iQEiBrHcNkG9;Ɯ= /^8dP!yM9zsMvcsi]$SJ45r||cs~\vw a`ۏN FѼ/m>I+V@d <{w8= j<>$EcQ\ƪ(j`.sG#̋嶤7ɍ@;szLOz8;"+/ t3"b>|_G86ymkcq_,Cc`?EO?>gYB0Bm/zm~Mи XW]UͻPpB֪ݩh^07er# )- 㞄V5Sp"֕a9q;kxd3 W- KT(y䚧p3<3 r=`1Gpł<RPȉkiq=E$ʜԏd.N_t-iByE-뚦."Rb@<})^R%/'j?I6V3I/4պD#)24\S4SI>\{ P>ޝk[kJPpjvnN Ih8𡗿#RIL}:LvBSk{o%]7"#JcDdj.Hb%yjw `1yaPnL@3mUsh򪾂3O:-0bBN:c)8lzw4VQSqn q֍h N[7'ڇW;!F,GjFS8֡ınq@ف6{QZL Z0$JխDnX@#+~h1#Oe,Typm_;h_sYrIu=x>te P*VKZΞZ)q9}7 c->B54wPkkF0tluvqRi83B]j6`qȧF͸࠿ܦᷟnIu@i#؏ZbK{v#IKά>PH=1L];Lx#8֬zޔJi`+}wcSR FsƹJE67>=Rc6aH{xY"IcLrgZlbگKl>~9Z}6| ?M\I!9# V{F@xcS>3J  -緷q-^{^C1Iy96HTi f=*4o$AQk6^n5}I-m22)b2@=ȮF8T[?^ƅ ??ΐ\ ZUƧiYiYp3dSxiԭ=uU z`CG+ d(Q׽-R4HN8-OMhnUUsl?Var(W/"[+Fq @OOƋ;e)R?\R)̐ fG`Ω)l!AO'J0{Qz=i2)~4 w? q /8P)M(^Ը"\P1r ;wך^} (MG@ 0 8s0u48~# i@}(>?`(9=xx2>=kؾ? o g7?Oz( g0~_6  >)\ma9qQ\4<5 \ea@{?ք2[@P>r>G{皒)srCU#v6/L@xɨeR 8eS$QsH:dޘL8 zH`w53eJ0b*{G$(xR#TxIFW.>nuo-2xtTF ;WJnNAUU\qT_fL؏RAvdʱ۟SতH5AlPu9$ՍG]^:,s2(ʢd 1S!ʐ6+4"Qߏ\'enadR=?JQg(^¸= `kR"UU O5&$ j*O=XIY0UhÒA$܁NIUvRHkrC,`39 Z 8`+WT-FN}+L;7#5?Uw6"ey<I/R4~G|՛QII8Zq$r\H=rkκ!=(,zV2qbF kxYk1zukR-K*I?k.pv^Tڙ5p`>KH"82M g GQu!_I]#md ǤBh|wsEpsI:E"[C^Y%.sVUHnq`gG19kJ r+= mv?#$\U@#湟_] y2>SY H{֗ EnofUBBQZ9@֤NTցNN(Q)xBuISǥ&=i{GJL{piC+]6~I!7|gsW[lZL |ghw8'}GYM@a<,ؐFGb W>/.W³3IcDZpͫ_M2HH;)X*'F{W|J|wi6WzT-ҋq$1)NK !tK_|Go%r$Vױ6G_"ӭ1q,E'inB>PFNF:-R[1Eb|mɅ8|#<|Bݩ%mUmX*ȅ>P˻?M~Ʋ]hP.YsJF2Fr9⧝CN=v(:Ti~ѱrd*%p6c_⽌-(=6!dfp8GPTd}O6 qBlaS}:W~jӝ#H}l1'Y 8MOY Y) +?s|RQ%y?agti+}&Ѷ3^c(J;=) sH:Ӹ#*@P(, 3c)@xO?QB%=.`c ?֥Y"X#_◳cS4Ad2iE]Bb?ͅRgҁ g7-?4{6]ɍء 'Ɣ@ߐͅ)N}? AzK/A8i\>~ޜ$vp# ~^ױ||<'dTc#t5_sz{ HGhFyr8Ҋ污#vFB21qҽcWVg'j1;sԿf MP1Ϸn`>&s [xTn5jCU?4i晁U\9 l?t 3^@1^xX_DRBz <~U6L蛔3ǖl郼Js"ܜ9FesJtxa 56I%$Q9SݎHn5nZϖyگ/?=}%&+.V Haޥ-,UL%8$ *b!ȩY kЎ 0!<\M7 3Ko-Tg$$B$9LDel ةI4.T bG\mX qn" @RcZ0ID7=HRP43!P\t#'#\2"+P[>F!p)2`}Z\]ӟ,efC9Cͽ} ƫN6,qΖHjREb=}j2=;%(եb\Bp* Ԡ=@P\*lY# 沯1Щۄ9rAҨjJe:Z$żRYI{Vd%HI4Ik3|͂ Um`Y䑌dz#[7oD#K4HR8īkk!-.6JĖs]SΪB«cEOVvMK'Cd#Z{w9ڵpU pOQ[FrKn래re(_ ޴6(cg5iK(MoJP%Tywj2rIM9 -=WC@^$drz9#T;Nn)>,}^i$,">yu{[a8読yc{UX0n]yrnWC` __z,"'W˪ZBP`LWSg*GZ&pmg\q4Ջ*m̸䞕?"b"dr@SI!]7OY$zwۡ$>zdcjM>X!}(]~ӌ?Þjݝ{#&ݪ6N ??Onnw< wQ۫68zV݌klr;G&dV)2\Gy3"@S帖]wU<)Lc~7;kd޴`˪㏨4}~Ahg'ɻko^J̮֎Y1⠰)dFPFGZ+ k.K\$;O}8XØ#5Q P:} T4OFM *m"GHH  մ3y)*S"H" XNoRxsS̲fk;%DvS_$]YOoYiK,zs?:<5M2L@L@eԆQrWQ{K帑Cl%9UH- J \WaWW4Y/[Y`*}VK/^ OևyL@^iVf *! dr@SZw>^F} <.=xQx >^ m&=iz f@>F9J\Rގ1L`(E(xGJ4 ppRJ:0}MWŹPnX0:;W|~G^1 9ڟ0AJqOaG$E;ʄO>?Š BvG_L}>1#ڈ'mcW #O+{;צ1Ii`y#nb>fcq&w֫ҦsUGoMeMq凎5X6ZT B+{C_0|_җLpD;Y^ccRCP1O=*IpWGӡ+2"GqW2fݻ>\v0K#nW'SXn0Z7ٗ(JMRk',2 0pG5+9=1.pFy>l3z%HX2F W$ǐ N>&Pv \5!0K%bRJx͚.+}`'| >f96nL0ݷ[VTb!sU,-\T0"y(g=F'7P@%Isy>q*[ YO\ҰUbsZz|ՙ#;8eLm#?5Leq֣bT2a]X?+v1BJqz=03YAm<$nIb?Ng\O)R|2 g2'El)r2,!F; ҆cS9sSdbPt`\G٬ `k z UMe\L˕%q0p:Bwӝi1#Uotg?fc%HVmaNX .{5`;u ǝ]ܧD 9BzzJi*VlcQlBI?ڗ[ؒ2 Hg"D*2x= yc.s^K> D qp@*mqg>WA y~_ZH^CbʱP$.@1Z!_>N#:w+ 雲3tH啰X/>P%pF{'a5cە`C:铱ʑaCNjf-)!MI||VCO3lz !)It iS!Q&*a@ʯ5lm|?Ü7F Ӌ X 8 T`԰FIn ќ/ЧN+,B斏cJ2u$hcS>E:c>5&&u=8Ǧ;WV.sS kO}O֠Y[if0HcrK\}iF*?!ɥxc|\*896}< 9_`'&C$c5o#}'Cbc.VH"eܜʋ0=K}oxe[ aߠ#U`~x)E$f\dM͸}h*8?+1ܓhE&`_Moe.HGp4gKy,.Y$@d=Avl> AO[6_,Ĭ.{vdv[鸱޽7Ѽ+aM&Gd̒ݛӥmaSn9b& zRMYa4xU*!Q<.<_0OW #E6wA9BO@ri*10' ԋD )*@ SxYմ~D>Q!9)\]Qj$Ya-5[9gwUe-!W{J]Մ2ψfݱ&GC#99VO zH4k9#edeh<|^zYnK+vkeQo0W -x$j}^_ Gwc~uARvb$k `#kE|3f]O,g -/m Hi^-.)mE$*p:^XǥZ}N7!.-ǽXq'5rz$:rZmWYY2fw 1Zg4ೖCm m$qؑҥӬmgkkH!`FD \ ڹ\fEjsL!Xfiw# cn +|UM;Mcm CDQN=*z55"8zc;$6|6zI89{7"6Lg=>׌e0,y^U觱`7}Z*e`ul+T1 X9e8?ȯL7u<bWh9S^pm9ټ MGk;|u7nd1C%Jrj) T-5]2&F\{좼ㆄ^{u&Uex3;XrU4 RQM S1zS>\-0V,"89j&4$o U Q1ǯ4ڌPKջ9g2C8MSZHuFA'_z~m1)Yrq֬jtG^I..z9} `Y-5{6C!<ZK!*Dyo ;6tҰ|XmZKwns@OƜ5юzjv/ 's?m݇FWn+X!nysV7Z{ZmBfu;%xXN-ޭ(`R ai(xSZuk#`{קxZ-7 i8#}T);{wފϵ5w$(G=}9a/9B {d;[Pr.0G횓$d&AF3Yk[]ik!*r8\#V|Gc3sXҽIoP4Y6ǡ+!{c,g{GW.T$Y;?ypO{m3hG西j-J斠q`8b`BX{]M||K} u$ẞz5˄m&{q];- }\55֯$FrO=Fs|KPʤ瞸LiyM< I>W&h+Ub@=3\7&QyTzƒ*?teL4_N:"YPrǠ:T2Hl$H ?Z2`}NnsX2H q׊;A.23f7 ߎ15˻# 6`;>ؼr(QQ,0K?,qֺNkT}e?Ka "2/#+z;?^\-;G'ÃgSn-b!= 61{oLc|/@O^*߆խtҾB>ح#e-u=mfٍ˻Y%VEk5B6G8Wj5;U,cu:րz ͏zҁ`z๥)3A RfZbֿC\}jKkx#E7Iy4[ǾUs.vOiRJ[ T0p26;_"0a o!AO,Q t1g>LypSFOJVC٭O}v g&(ڝ\a3K1fJ. GwiѤ@j,(9NR٦AqBpv{HSsQd?K:Ҳ e? _ Hs^5C30 潏+*@W?ZtZ{知vCs'mӭ15ndBj&uaHZ.l兆UԩF+M<U# Wu{9\HQwG==+&~U zp8$l~#?qo"=q:tfM#BR<3>r*yP6qq e$7zM. wSln~fnJJnABj[Ѭi)X.jAq5_ zMb,LMhT`;Sfinm"F.TOʒ;DSM&o}pU`b9LTf\mpqօ!rIQ8 ~Џ[­R'8zA՘X sEW0H"rp[LVh|UzҫIoXcE̖!Tb:H*TcqUhd0V ~c5~osUa o ~-J9B092Y# FT1_FӞz99Њc#+2sZibK( TlӸNr?*RB0MEʱUkɲqV@|}1QHJd6BrÀA;})nT:n+ 򲱽ԡWkY NN*mȸR,XwuBX3#7yZwY7Fdi\[Ck\`O'RY}T+,ǒ3u#Z" qm hxݶ?3U;traӠU {XFy`'?{uۢE"FssZ⟼hي JvW_b2D-9"]}x7yV 7=FDqZ0i ߞ+XA.HOUyK4z]ژ?k]c:KK%mI9\ڙ5'v3cqȮ.CM,l 䏦xluut+g&\ģ$'zUMp?5VW pt6P99))Ela?b@=G8k$;( @q? w ,hl/Q_|cﯚ&,ݹ9Yҍ/M v\)+UA-ڣH+=$hOzX=YҴs^{h<z{gY 7(aW(\OOocq] <#SآL^3<ӻ%@AR.*5zk$\fhRGN9qs XvޚWvsul7|[s7mRG{1aPKQH}S-V?mVg]prIgҰ ьsBRE0=GzQA+=h@ F0?ɥRJ,Q:)HĦO& KNXb N \ `cޔsKm!#=vaV~i xߴc}0dI#P+ Oq98?ȯf ֖qya|WG]s~+įt2yRQ84W9g-*)_Jo٭5$xIs^KX6Yy$+?foQ_ⒺṓӐ9F5tg3T2ޡLÎ\ i¯}ύGO,'̜zmܨ0H?}hX#_%j g$JR)85ňsznZ PDs&&& ̼8^tl@"ZƪW9#9:ЖĊp1O =ii#"UUӚLb9: iA zj6\H팞*KXeˑ'i!{C9vXn8M1ozMv.87I؁Y4mg/9V iFdUẺ_-15$ɒ֚,"`Ǡ5˂Lncm!+ #u3H{=~PGr#u ;rkYm &]Bk7 ԝb֯teZC|u?jڴm2ɻUOڮdh?tZ*67cZo[ vo#/nyVeBl㢹ɭ̡`dz߸C#Q<2pA *NƔͩjuio(iO]iiui0^iG8^eyX*w|;."f ~i2jhM-,8#E vVUUڊұ=M8Ӕ -̭w1^$\0NyqAX KX9oex^nªv#w 7PEkZ6$I=˅#*ަj:F{mgc Ӭ$lĝ򴁔9nzfr: ߾ ygEL>[ ŶY"VP1a23g:pj]._RK=bj\,O `Bq&Jw> Xo+q[K~zpq~ѵMR(WVyEy,BN9&Qg=N+x6N2ƿ<|E'-{43ʑAX(y"Tk9QUx\R$  `>+.5d]x |d}pHj?Zydmyc3hgkg0Uf6*|qcmlym2Z,Vܭyq-2N33i}kQGlmm,Kky.-'2傓ʜca~ ּGgiZ;k[|F e$鐤0ȣDRKaTrO{m7Lk{ Hffgi#U7@N}q@|Zx9 $|ghV Iq{Sh~!ׯ|A,d@eoi,۔gyUqwcO9VKy })NPt [(V@+]AM{FIDr>.FxX?챧_5kcF,uu+$ʼn'8Rr@y42]),-ԫ[r~^y6mg 6$q*o~mY}Imily"hxUŀ&-kZi˓T&zkk2!pߎ⺛hW2iv9Rr_v{z5gZ۵FF]'ڀ9:ŲEh-$xXP ?1!)#86^hcR -2Yt 2OIɏJ_bv~0U UKXZ suRC!JK{i4"c$k%t 2 giU$ u . jVj$.Gp pj+xryb##0鸑&T"1 Zƭo(nefhe%dHa|ջk/sA.5ݕwk#&܂0XprEkit۸mf-e%X`Fb)^ -1Ko%rp 11c^:ҜL ['Y^]`\d]kpY6Zs^ڒX0cRJ35q}xpapzZf]&;ԑ/ZO%#E7s@]sľ&_wVb$||0:_^X,ڎ bn;>i=2-I"_]#PON}sZ-J[̮x(Ti"OzfܟJQO? /2ztּl.:n7$g{:,`]>C^Io q^맱N[ḫLwD9UEvPG*h 9bx,Sԑ=wbMOcZ%(yTe! aPËp~=z+s[2'jF( j3 c.h{PҾe`64)%PW-gx5 ϯjg2nwU8Y^$+p+p=+,բi8-iل1ɲXB;JZyD 6!d&Rc獼2]Z¥& ciq? C% !\g9 lcc$s7'$c}k"I,܈F`#WnXHO&Gs2|( af3W̾TXQT&S*G!y)*tr'#Z*T㱫 Pp9blƝc\PLk#8 #RVDs6In'%a>Hʫ֙ 0lu"7+pht_>mkw>HipfāW-gRw]Y@sH;4,U-sM1 keD>z~1Q5<*+]g];A;N"X/̨@]oj&! Msۮ+vˢʫc>8淥Lj#Wbv?ʺY@302TsҲ lڅYK[gNIUʹ*@=XT~%muRUnHUfK!nLa5%'Y@>֙k " C`UIXe@̱)aaןZ.ZEOL\Z#k?yQ< T:i~ZmёHV#C/]<J]gWP|rӽAe6](j 0W,'.EY$Vc'Ҽr}g۞jyZ'*10Z\8=嶺FR2H 8$/^ Z0ԃ ǯzєc*㷵ssh%<2Rc1՛{v}g=IZ#KR)n#UuB|Qںj (杹)d#[ݚ:ͼ2F )89GJpN|6dӮX 9?(Wԗ3ByRI$f/ӵ0J$c l#kמH/dHHg`uPcLSH<|N8qҁI) &;cr1^w%w:-ܱV2Dm_.-zDHs[hy$~ӿÕy]??J2jWljk~n 1\Ě/lttE*H UHs]}՜7SM:c bڨ[r(lVXn3 g\m 9,ySGY[c,ބUvh*M彳bXA&Wϳ^xV}}l&g%e`E'88ϵ]b T]vJt7cHЗF l##1 &*c/ -ay=L~5n+9msŷwܯUIQZiu;5#;| xۓF0rF9Ӵ޻$pP.͹GQL+_!FYHpV#wBWpZ<+<2E :\{{DDzi `B${ʊl-_v=JbI3ӌg4+ 54啼gõ]AW<!HtMJ-^8-ɰI=.$p@%JrAh^=+{[SVZ^qj.#@@`Av j[(T@U%ry'p:öw4Y̍T#Y #q8sAekQ~'$3E:{I=|S%#|νcR_'2}xjr9=)׮*WTmVDM߭F#N޵ ֘ߎxidt@J ?4XuT緔+0n9qקqX^5Fa`8,qⲫh4\|ǫ^KAqe]C/3{Ug9QU ,q3yױF}X,٪kKv$Xp0I|s$; sRn|8e$FlnU;T~EmyRlw}+ysW[+NVl$x?5gQOu+w+⩌scxN VI\;O5VJX:ē!Ͼ0CgSoCܢ'e?ΰV#x*L^v[^]Gia|`qT?zVq6 zuk:PNx\?1ƮdK6I};˄<_:xGg ,a[3hL~L@u=;[[,Jz6H-֮L !*;s^!x*B9+ޖ0 jFU{t&:d({A]q ԏ𩣍_D |xa8'8[ 7D;YGRA?H?0]CH{U%NtJ#HmKU9j4d׍snX[O*=jn]|z nwqҰwƅtۉ݆69? 4Wݤsζ)>uäkܝ8uiGT@]+KF2Wnip{Twycd}X) 0U[i.elm Gfhrbj[Gʿ=x^]JyRT9 q]7l-$P]bp8]Kk3O[鶧!M91);(ijqªk7Fۺ8 ǓnwMăۀ>^ɒfxx0 m{X>7QOH%p0H\ ,Emv iӿq zsEq?=z%N`?WD=-yV}$`H08jEs^)=)9<~tJU<У֛? H,gqzneȞ=-e;&>$+sg|Yj.LwԟPXn :G&N6nvp9dw~!Ѯŭ%yZm?g~ߦ Qм]aɭ%4q+f\ *þpk7U}>tbTWȳ0$ : jS5,(Z8̑c,Պ1CIu\-#S%h;Fŀ~V#$ia_>qk?kXϐ ʼyx*qexc)cۖКH$S8w`{%%/;oTެ@y4汳y&wE1* +z>GbSVm2Ilh^ēo #ӌtz t;hv/,p'ey-1PĎɂ-Ub@ؖ )Etf\˳3@=A9`h1dw3ȥ^$ܠ3Ӷij<[ku+ܰ%R !#{c֎+Vԉw('jp8⢛VY{atE-`c⢆X wOdr:R0#0sׂvB=j5< i⁎'I9lRW?{~5 H9^A:.K9a-q^A!n ʨ\q^oQ"!G ^% f| E`YͶֶ&@Um qɯeg̷i+K3nUŏnGOֽaz/Cne-cluۑR߭13 'RޣHDG T;cqPN^Lu4|Hҿayn(FG~sXrYH\碬v)n\ ו Jdzo^eE7.񹇭˦Y3V`cS:uYJ2+{}}*0,y8e~%š4NyS꾆JḦH}H%:"I\MD ۀҦ;O20l@ȤS8#NI6@4'w{cވVvUId)!mi3 N}1W(tTbDX1֪9/ :sȥnb<`CEU0GDQNSZfQtlX=)BϠ4À@Rg2GlFff<_ʲm"Rf*gޙfjQGOB\fN7L`鲤l̻Ոy?zN}n8n=w+YAܬ1rAMrV'^@>5ܞBa _.a2LGC⽻Vav xed )sHΫ SL+C [FD nj] Ă D>Q}3Ei.vL`M"s83OYA "fE\I(cӝiũ]m\6?HK` pg*/?Uu^B&M.F89t5y[F0z n&*~lӷZbh21;GtRf$lX7;ML7cdBE{V&B?xAiv<ʑ;sMVc#?k'G"Cjz gk¬-$jp\x; ;6qF~uZg,׵u#;]v=7||Y.N'*bB8o+ ;3 -܌3Xy$Tg=h>化ǩ X)ybFzUZ`Dg?ZGg oHciz%kKmG [me$88U.Je2kW6L^"BK>"T˴ti=3RV)7"K,V"rI~pۭw#hJ gi͞6ő$tn9ʐ*F`=͖Ih}jQ;xn+La+c8>yn'n!hb$pGPOlw y#TZix\xe۸ ͷ^;V6"3E"BpA\c0Rp)ɱ9 PC5+ /CG˂hi$lvIkYx(pFFTA#4N^G5GWtSR[!1 @`9#hȠ aOҪYOisy0)Y#8攜TC2Ů=0rWhhxPZZww0*mmt T)l|U=3qR/RRR=(r a>c#)[$2K{sؚ2`~ל KJv0:+í #<fEa 3Xfc1|cݻ9=3oِf_\Cs-x7 y׵̀ x>觹=S[84 azFA&2r3RiDbuXSgF7}On"du$p|<^Kep΁:A@G5tagX乏,֑'}P2SҲ5!vG|u&;@"[)om"nGR)5mmOP-C~þԬ0 2~Sy_D9 NqW (ٌ֦Xyg*i8-؝ϟVA|Q'$qX2@ڙSYXb ю3Wܴ08 c4-ARBB@zGf;% *GBxډ$`i$Qn"G?֙ސAx,:`Hj6?šSHIڴQ3۾vMdoi!!\*#~,p t%~^`|>B!g*gy?:sjeAy>f''ҹIe !q(]$' W}[Gml8l?&y䷄Acf؂]X1׽kJcVrjxlMp,OJ۫?'8DVEݻ}.W$cjpfШmx 淚KTqoLbU sOJcRpg9?CNtf$ƽED38YӇ uoN">9o?ՃxjOء0|UxcSڄAѣyO2FACC]A FG1iOu :HHvǯΧ= 'ﴩ`֑e;ClL ?wA+$kږ{C_Zn)0oJ|-oZHXt{KhD2PG><7i{a {m<6pqUgLմhI;q Rnx* vO!z~y8aS:eƗD_3\|{=V' *KvAhŤrDY9^}kRy}J?sl#9|F!aʌ?Z"(UQ=?vHS8OOWG@ jvs[ƛhRHrqk\ |F]F+ N'Q@A3Ef2y9>0OUH(=usVWڷb37pcnOoh2_jje3=Fc mp5q66!lqCC,Iq0I;yt?u=]?oЌWp'Sߔ Eϵ.{>-, F͓UBğdkڎwy{ XΑeT3pW"k{G\l.% ,y(D8Nڿ vĺ6nծh4&%2d'8ȯSM5%OkV~mvwZ\Ddt&3AQlp3Vu{[RDқK11?tcb#9RsҚQ61ŧ 7#Zy3Gu?ͼ,0NVWSE=˟E}LOFU| nU]C T@@9wFR9RGC( .i4k1M$*FGx,{{.εkhz՝zSDI0q;I$`m3^*ō浂I`3d z3ƾ&"K9lZ5,2yf'P 68~PkSvh¦@=7c8jF@;zU:u>t`.YВQ1N~-WtAs/ǷtҭA.ml^\C\4jL2grÜ$s'Ӵ]MͧV6h-2w[;Rum)Qe>Ҡas9xJbzJqiz^-SEo:#}F$!S#v@5ھImqn6 Ԟlc9>+Kkqak/X7E 35k)5 m% sݹr3Ѻ^"^VWc7rB99. 3Ԟ+tGH6903S.|7\vi*0c 06:s.6WRZ\4R: )lGr;V Nn4e]pCv֨PjJkS)p &3hh q^<qڪ'<`&>Oڛ^:a`/ vOBF}: w 3/f 0G~V%r ;2Xܤsgtl"1xUDj6` OfL6r _?tS[ csOoº ҘýH)9?444_zf8C⎂߅bPp:ߎK߈k'"C TQvw>QBJ,@ 2yLR,v_<,6k \*(W: זξk!-mg9KZ&`"1vqV%VlR}zƢ-;2J!M5&gZ*2O򩥹"B=bvSbx'=+ÁR-&(P-r=AsęE!3^Aq̷n@gU5 \N"0}қI73ū2,e ?SEe`y`]\!'5>k\{?* ,w5EUujyQ dq3y-dZ)UZn[*F3K:J˂YMI72-aWPU؆V012jg, X}TR;c,b83Q[!O<ԜF9+ ] v L.1U[V$aX?ZdL3BxC+oui,5=S&%ۻҐ#HIn8sұc޻5ݡ tԉuϧ{? U$TSn~:I q'`4ECdyX]狵feU%,Xc;qy5{m;hFV;P1RF$}JURwDItڮI .`2xϵi_xhy 0$u5:޹sZ[ *Aֶu }h0т SӌTNM)FN #4l: VtϙOŵŰ8J@A295j)He<*rOzS t*fKsOЊw,6[ڿI'?h[!PϱF06Ƿ5vյ!p]0dsx"UIOulb_~b:QShms;ױhZefP9=7wuZt,-cDP1}O4d ONjA&CzS zրzH O^%9r= OX E9G8, $tW?xIOYd+{!ǝꍞH@iq]6p (HƵ΍MkZ~y=Wby0"xʑrI3xH&:62*}'SQoZVmC=}8H X~ t?;&%mo$Ndl1c\ WGkJ^\T+9"48[/h݈fHicZY5.fC8 Yy.px)O%h]* F@O^Y.5 _ڡbw tzY ,\-]Oxo1H#qX.m휚< KBҷ*2́j&Tӭ {[đH/`wd:/${adeUA MuA>sGןATmE2 `%AR"5 B]6Y>dN냃xYv~ ^MP^Kج/)W|C7 cEǮ=t|ڄZΝ% [C8fu]gHU%~5x`^&Ե :E.Shʏ#cc(T 8I9Hma/[FB:ecT;-[X!ˮrz|o9ip}">7+K=c;yW# 2~S躞Fy{9r8'm &Ӟ(;g4!=H 8s>H2iPyCvsJ@)ϐ1QH9aq)C7@ =021ڔ/ue%]l DRA+WKd 6P͝R8G c◀:כYKu?siwS̳<:ݶd&C/e Zw2ZeWZrLj2ێ=qHgn:R1]̷7f6IN_z++*F{=Kt40=Įn Px O=@2N d3ZoxSL{lnH'&. uyٴR}yz #ELErW#$7{z~^o2@FsĜ?7'qE`Y$b s#h:v.b>Z\\n1㿧oƽe;lqaOs9l{19ydFSLa֤85FJix5#c0!cQH )c#Tm@7r9gNG5]&Z.4r2*{ |$Wfs4r۱0=F0k3@⏂Ucԭ1I?r)s.e)FxCH*;IxϠ4O,+$0WǞ* .kWTeLÚLݦI\ANMdç١)<`@1LձBFW^欪LGGOƛDgme`9i HRDa#ta;c*Hyh3F#|y<_OQyq=p8^٠q$-#I[g]@ַx̐ڲzz%"$%: FtSl! X#g"xGQV I (y>E!K&q( *.70Bqx++aqo:<$HMd4Y^U!LRrRM=^]Gy%Vm(=r{R퍑>Νǫ`~wygpÌֲQSJZy 2dA yp(9ҳPC3**sᓌ+Z *X??Jw{ʹ#(^p ˊٌdb28?Ty0MIʒGcR@UL PG^ߧz5H}2i !QmprsU?:iwAy 彷p-9 Zw&cr2)I"Oz4EE)$ӭTHcv$fx&E"&gq:}HԗqX*~V(ۑGR2vdI6yY}RhwqQO,#mW31 F|Egojc,OP7~U/Η)YcyQЃB8=u b664[?(#?߈#!&::q}fn T +9*֥VEd>`mmaWYU$"m׋4mlɜ/?W:Mݒ1[E[#$Jw㟥QK/LэKP>lb?2z[MPxg2N[J3=–Io*-WLl0*K'1g ÖE@$:O+ӼZ mSRbYR aFOSֵ;{kH)ȏs|'^&8"5UP@+Ey8nˡh!Q"`Z0 8U*3]g)"׭4jAFShR/qOZpa})R fޞ8SQ^RU{E~$ д(1O;A qs-˥Yz/*E= TAvR;*)f ($NsN[NuPfH\:S2= ?Pl.൶*2OL "z? znk/Pq_2Ur:בW@0O)@𦼱#[;xJI]OPA+&NMB㲸`@HQҷr(¾mhK3lFl$OG5, lH`r3=t=4_LlbQUQS?W{{b +$CA=+LFi_J}:B9槗?/9vOaUCm/F  %H s iݳs .pvu>^JedTrI+N8kípQ*< 1QAؒe\OVe9`^{?N^:P]͸|>쟳AJsu\^kg-^#Iwx)">{7Jyf =zSM8C@j6 )(6)8Mh3֘*SL` ;&lFs6SR1ϷjjXH`^3 Wyit߰ϒǷre Yuŕ\ナ' }!cIʽbl^ޤzV"YZw5E cAsm‘,HG"SX#1֚L1+Z-%PsȹV>xm-ZeΝ,IP1E/- +%|$97N}I#|t=2PxO$ymy_pGO|х gM U$AbMڴDRmsy?u&!^D {r٦.tG9Ls=b=HKSf;Q?,M6h]778= Bl~PlΪl&S-<>Rc<l[Cnqw'7M!Y鹋4)7)J1s}%-?3Z-ƑJxW$IuE|'`2~Ze~dn=E̫o&Yf(z1_Nk%ci s3}Lƺ=r=ܢE>\.qV:TiAmOoӏ:6Z<'01;`g?,Uk?X\\ԡ*~'z`^iS}7M ?@'N]G- I V^x@ηt/~',?2ߪi| #\MpAmvjjB9gIyGgkm/G Ǩ5_ RpӖAʣ%9׬h~4XDz}qqX'ZcuB]|b\ }e%h|BgLR=2t q}40N'9WiK1 ~TEcrE=ϵGp"ԇ8R=$QOz4HS"h}z{GCyU5k:pʭ#pYOR](>&R[F51o!{D?knvF6eǮGO&[F-0(ִ>@&[SE,^~&c[z707Pą {PNk, ],(%1_#H G"/i3X<`mqq@oxfK㼅bYH:96P!7$!Ð##33tY85?j(xiӣy B6=Mn$5 ߱X7X-px5/hwqem{%kf Fyn7P;oWˠhwILvjetXϙ`qYo_w^AkwqȨbC#$u3ҕlȳbPM8FR/czvou%C/<ȸ Ig-x ]ܤO.i!ϕ 6GSZ޵-+D{?fk4UFfQ~I`.`b&xz<=eOo{CRcfGPmaލVWVFBd`Tdd P#1I6+Ϩa4h!Pp@ 2qҕ|]8Уh?&7r#ev8]! W[YxzH.}5ek&%m)`z {(&|(ҎE _@s|恞wa HM>^jq]h:E]hxl=xǖ:㞦tuV?hD \DҎl/ӼQ_jV=7S FYJ3U׉OYV-4*rY*2'>v w%[ nI!URy¯wzַ$EEľR\'fpHϭtLgןj t㱸[kS4~`FFzf5K[dmR% ,`(P0X'µ5[}KOH\F92AȤ3q귷Ŏyur Y[:K"6daN9zVKjm.@l.$XUU,yW4X3\=Q-K!UqM|; ;vM! LF8"29;o Mmq%ټr@8 NA?>/|3߆on |̜swV-C53O<oY @` o3x{7$ztCVW~lBndvҳãaK4/漐og |xǯoμJ 6,K Py|cqdhp8ŠĢsۿ~PF18 ZѰ?;}{1n?01weoK"[9J}3)atLa #>Ҟy9v 6M<[ך0qM#O{7F@i#{S="1Ң+^I#u+.AT4qJV\oLy5 ^{NZKNnZ"k)جH J$Ȯj`KmEy$ }\u0&ѝgOo(mtnj qJ`U-iwT8d#G]d 8oJ)2TܸPXR? ߉5s<|҆ssn2KbIv@&jK<0R vr>S"ķeAaD$gXsUs#kWӚ)&wIP?JKK+KLy$o\#? ﮼xo1Zox<ǹ+uϯ]5ԡQ#! ,pJ8{[ G%o`W ^ -P;R{奍 1ET@k0K^$@:RSm#VAg8sHV\3l+p$уc̀ P2r pxzU:J#^Z0T Dii&ϝD'1c'a-#QI-<:J 1bqzLjAfެ{Nk|;`ڔg$-p ?!Qzng*xm-m y`qsؓA,nE-} L @~Ŏ \g'Һ@?*(厧ZҺ+G:c*Lv8tXegoi}JG1=Oե=G0OQx@Pi7uH0*i@z A72Ā}ItBqWx+$b,u bY^x綒{``*nȁFw9㿠Γþѵ[)6vD蛾]]iw-"qBpJnyGM{i-F?yt tcwVB׮乷^ f9T$r9)F0I1xzk:f%@Y19*߃LBK^s7pyo>mdgb]?zEΫHKnaC㑈93IfkwSY᭷LŒlD.+T؇\M>x^X5XtHŽI,9jj߃z nRr|+3 稦cYS@̺cƅsrHsz:dAmy:W 6q(j>ǃ55f#SO]A.T냽CˎwBG';4=Z\NUʲ#?TxV| 7w&i*I 34y- m =p+m&]R8xU,G#%F}:~*l ~K[M:K cq#*4"BP=xhBE>/YҧӼx-Ǚ!P !%q+~ 0jwA-ⴗyXP* 984]|C_ɥh=Vw pʆ5 $ !ON3|AuXhiHnF8ɠ xo2i0vv~=rn_avC\%s^Gl D807}qƓhWvQ!YeM!c0W'"Z|o+X`c2!`ңc7$92vJ.̲aZ.ISڃ8;"^9z=Ι.;1{Ku?)?^QK o-2ChR,䍒F6Jfmc±^V֥"̓;9@ b}gH;//HIp)ߴpAgjM#YҬoSV|۟2Q #Br8 5GJu}W[,S[qr|M7{մqA{mu vqܤkL 'iAS7^$ӭXfYJftCtu\\~ LLrE.%&IF +{ T*.BJ94?\_{T.d]2EAl-;wDZSA/yՌuZГ̦pN yydy=|Bl_Zx-68lɸ6~qnsnxx#<7h֯RY F7vϔFޭ|: e_\9[bCG3m$ Xףžy|[8-?flhgu}eݴ1.>MwMC^j[iwB̬B IN m>,o^YZC8X%8߹;2}k^4֗5O0哀Ae'Fy ;۽s1&.;FEKi!-fFPBv1p-n[H@mBwwlGVBxK:O$VL@a~Q0:b{t&ܒ(e>@KMc@ 9Lq`vE0/驖n&tRǭ^M"R⺌F=>I{hҚIO5Fi)٦{M4s oQJ5M4׊CbA=HiҀi~Zy4s~1Z%gR0~Z_÷-]^7}vq^Ѷ2A(2)%TTVSkԵ6>zҐyqʫG*)ui$u^-]݁m2Z><<Z;PDNRkb۶9n#JKT|q1S}{W=88xH{pO\-JğhYGj82+$c{TV:ǓImmn;*Xs. c܃\9m`9W|D  ckē[&MӔt@_VۍBH.Ɓxp}=GA$W/} Ő\Jg=?f\.&DŽ53YO={?4+Z[1'X<)æ[ļ*OS[x^:Juc3#nHNޕFdEyBjLQzqLIM(搎.G#!(SM+=b:n0"#HG\ԤSq UWMKo! ׼)MPOA7(;sѺ?x#Q5ho-,ͥV+r|OSz.Ť^˧6i ݡe$3g8h,EkZ^MCy!7)qc)2䝧#jo|+{?4V;Z%s`sU&Ӽo>Me(UѸOg 7|3pjv+kWi?-Yw**i-;+Jx%8%WhlAZX𥏇jwh㷔2NTc okx ze:Α ѐ =;unmci了M7g m(A&=K}?RӼe.p r6L~!yI plㄽߗaHxFvV\Q%B  BNH#Zk7qZA0-'Vۇ#$1@E;AGyoH4Z4qpNqEe/]kpC\m.QR58ے{#'o,Cށ{66v1-fȣ%=YV[`8 %' _{ɪiڕo03.t#Vzuܖsv,6K8P8*=t |V^]%BYU3B۴:[/ r l[.)k|̨X?1!Xsqs C+?2!bۑ>¼ hϤ'*q Ǵ%h;^:D:Jr,$eczVƁ]BNt.s$n*B@<ˣkFZzKm{{}$2o\!PUd(<`ڹGAѵ;:U1"L$NbN:4xsILә$=ٻy!HH=UxVPRآ41r#iY?NA#Wuec}cjStm!"AM%݌3 o I@] m^ǹW(,x[wv{}%>,R59h IRsHGmyAwiKPc%ٜ6CK0Ntn6rq3!Fyȕp3I e:}q-พ1LQRqּP7%Եua1V;#\ 68 c4IT[L"d0MpCaxo i@%#@0q5|6u۟j:V1yfHVT}c .%,"UDdhF-qKcE+!&NӑYXy  Rtu2;YsT9 AA?ΏC;kuwrLJpw4"@&zƃ[Dl"]" &sp{ eMԼz Ofѻyz{5lvOFgڲ1 @;[>U]hZQ[rҁ[GZZQG^((NpTԄqң6'*e$> &Gm^Oةr XF$Md?ּ5?)m8=+ípزuvV5-$ g*+ǹ(^_5-n##=׍[eaJg׭{'O^'#oK"{IqKZU2Svԇo`(tfN&OqMa|9|{aɠB;ҟLs֎zSH9@Muf\)e9"m 6ʐRGiLPL)i3@*9$B1Z@p~+}c~^Lccry;GQ^wukzmѷ 3^} -c1\Cz\=4S}O KI";85$qmazF ci+ǢΟ_֫x{Vzmɺn_c 1fW:9 #PՙZO+,|O>־r8Nq^T)>09Eɮa!ɜ|5˚䗝?^|;Ise-Mc'#5-/3\M;a`G?ʕD3;M}m檐r'8\šd3WVGLf !| `c48S7H%^J?Iv 3%l4Q< 7)٨Qh`Jah0ΣX\ߖ \`r PGb(}䌡5Rq”ŽVAJ 037R~ŽV})Ҡ[38][oG+p9J\ z ?G+uY;CR'4{qR(q4 ? V`LH[<]Cs'(p29{T qv'ž."? ,ڞutf݂FKEGk;b3t>3h}TԢVpz[?\su- odª;3T%eF? 5CN1mqXY4f(5&}僱ar .="ç p;W/{ pjz5kwqg ' y`+Ff|as[ݤ7ijLGo+NdHq`~LίekB[au^'iopc]fM]N?1&[X-܍fx?iiF[[v KmqԊb uD[dK'ݑپ޹#uV76׶H7G$NXz85i^4(48C%8pH{֭xWJoعxv7Xdp@+|)Bxe * r0}i<3JK/$qQI$sRxL5}5h{F!TH97&,)Wv% ^?K;hb YVZw`BN#&6x~5I5AtɌ6ǎ:T ֋2VW2T6܌)?uzUCX&;XvA<rq,hY^~pG=ٚ\ԏ O$~#j>{j4(vW.FvHkѵa*Cq$&HNrx9SU/xwPiśf}H݀8Af [ޡf[iodoL"}B״}/5}>9H%Qe/(Po F+}ޫl,+[+Yd; r:v#Iָf-v#;=s#~Z|<ѭF/uibK9좊k"Ec@G\wh> GCJFwWXIQI &ڻ]s\ލ'JUPnƉ& ˫%ēny][h=gP?jFn.5h텼a p0)`9=.ҵ jcJȎ"ŭHҩa HWS Y.B2Z)E=\jxi%eC 7l3Y2sځt е !ԭ<N^nڀI`z^k"^x52E$0~OkF/ xWC5y}661*y#Qe^Gm}]r7mܪE4qZ}lEևhw*qqvhӺ QI\mG=\#env9#K8<+!\'p9/n=Mң956'& 1}H;+PQӭI+T. ##V7 .6pYCp|ـH$ ,Z~]Ťvn.јOI1\vam ۽3{vڐtlm|Jn1ڀ9Sj^<0-YHmw,A %`0#vujiYUv,X+ )19#E0&ԵjR䟴38CrL`~~+a?XTyCQ'\g8,*x H#Ƽ: v[D?z*3Hy`J+A]d7z潏uVַ. N}F^;g*n\1^;]?Zy+z?NrJ2Z\RWa})O)(b?)R2FqH@N"Pi? vzCӊn!<JG4ӺP1ϵ19Ҥ c4(9zv:JaRP2k *7@abǭ0c8?|){Uļf`<ӳwfqϭJdF͚c!+i֥"ifjyPOz④ӭ<04V*T /~g'cb""O> 0i3n=jB9i(“n{Ti14)BJmzRJ*@朢m;jT1֤ZHQF*DLZzp\EHހ5 Vϋ+?Ch!/!{xm.~F0%ss7eP4GeA#v))d}>sX[ΝX%.*} ,ă.q xYܛ6 c ,%xEM935k^Bː@ d! +o^%̈́7n,q' <):mn15[Z`wQdI`zTz k?Xˋѧ$0nx )U53m2Q%N:qP.] nEQr?zeƮ >fnsWu)%XӮt3>X9^yZ$׵}?6u6d5Mgp5߹F3##˛_ &X5[RV$UiҀ3_/.nuZ#x![iŬ~NضӼc5RZĚ=·2ɧoNIU?-_K{'zn93^oe7ml.uʣ~Jʩ0+_\>)EW*2M PKB0cbJej7ڷm5-F-eS2¹hĔ W>#Ů-.nӣ$`CeK @0`iLbs"r{ dD52قO!L\? ޾TlBʌrA{q^Eg<ヂ8^Q,XQA2sNWlLn%S7آɟre}@~9@q:05l| y Ꮤtc?ڽose֕z-y;Nkj8IF0+CӞ)$S8'3n@ !=)0>Ҕ.Wk 4iu4;Hh|RqK:Ry(ӃM#֜Wtq@Fi9&F*CQh֚qwc< z)搏ʀ#4>›7:@*"&5t]? n235:]ơeNu$J @pOA3۴FiaF$bHĄzkƃI'[;K %dI/[f^8[CK}Q5{&FӉԠoLqXۇ.#Z],"N㜮G"~u;JK3 Q] a w0 qL ۟x~ H/&lRv")Zu @9EG7<;&br9*3sK\V/Gsw5"3)O!YrN;UbEynBHBIx];) :ClfiF$Wc֊2MYNAҸVt>[5ﴶF TIR#=վmowsTm|09x=/S}*[l!Q {G..&fDPGL*x--/H${Đ'̆B Y6]:.JkdbZ1f^%ЦgwLcSzg4ѷF$[h lt=*u=?Wkpdm3Lߙ:gp=ƇcHk{Kx3?Z@kK\\c>\)~u){+dv}vb_NхOjՒM>d U9 ڹK/hZ L"Ep#O$rvIz`S~VVkE$@^Vp0sy֞ɦBy{;U9,gu85gU:JR]9i2 qV+S}: J[p'qPڶQ V܏B噇! ``5h=TXd[ h(H 9Sv3Nk]r\@!Sw7Ir&{Qj?|F1?rx_K!ChmIKw.H$H#Zzx;OU r<cz ûgԵ#PvP_vyꠜ h5&k> 꺤:娳^\"C pbl=]:GdfV VTJ{xoM]+K"2EmO $CsV9,W>em6H眞k+jz3o_yBck$I$ʲ+q.uoͧI/;UIlxNcaјc Ho=޽m6P޹:F?/2Xcjgi̞(wEbG* i7L#hn-nb jUPGatZupɹF7`C!&7m[ΐec1E-5X+l|eo0FN-<OZ_I_=ѹȅ }II$ x\tJQּKx8b*o]`?xw^'Q+H.;a. QU=`x;/hZ~^Coe`z7Pxǹ/WbkV KfY``NI4:gWFom4{cT⌅U,nz+V ĽSO[9ma4!RY!XOp?+'&m?"K䡟h5xzhYmf6THC'9f gbM2T/ojA|r=°O\YzHʼnF 9>g.l YHW9got?+-Z+ 4Z7nfm^2 dou1{4PYwrZoxsfX?-Q!%c\nړ_Ocºk:5ջFā:9q :4V]XbhHUpUT 8ytci m#Y T0!fz4c \WnS,5 6I$cl@%yRGld@TdiA9fi^)Zd{~ G83|,ksh, FRI9>9bfI 8?½_8?O|ו%(A파k¯zP>cPQO(1+Lܸ\޸j̟k$|\q8F)0#<^94g J'kj?)8ԊR+f} 4)u?z^fOҚs;LRb =)!E0##4?Oʤ4@ibܞ)iz_΁t#NLSaב\sڗty]hZ 5;3)+( {3:4¼45)K6b󮢺"Ǵ`;d>/Ҥ#B^%Kc `|d(WLx~|:twcԞG?eLFBbNr9&W6gXu8 "KV aS4A8))Ӕ`8SpL &S# %SRQ(HHT R+P銑TTHx=EI:RHu/4%o{Xd$iQ]L5 tຑcERv0ۃ)+8g5~([j-.H.#[fDQ*9eF2 [5ֵ].k?ͧY"]EK+8(9hcҫ]0'<ֱ4 }qZx+%7vUCF^6t Wj 2`ON.m_jA-KV91nEVbvX%LY"} [vd h.=ot6kXDLѫus.UU+y$nTPq,#"[& w1v,y{GNs=95*ubX6؅EpٔP9 2* W7wiGo^[^ Z2(m|BÜ Ŧ8 w,34)q,s(Kb3pxBby-9e鍳[fNC5.4EZDI%q GRN>f2oo_"][]A<&=`wp;˫ .axe*H>4WXi66 $jĀǜ=[SQ66!a!%3irw99?^-m%P=r`F3=7YMYn,_ͧn''χ)'y$ ckZx Z~jXqgnrqҐIOΗk C -5إcAKh4&R#h!n8`:^߂.ntD%22BYdfp^99S}t}".mXդXaUr@ Zxbk}J=4ܹ3(rq rs<;<%|cOrC ST8CRfZuȲVlF9h|€;Ѧ,bp O :}KM']'XܦAh_-rx~ԡִ&Z&X~N[m# 3@֗_麓jVr[1b Rxgjχ5k3I޵ܟHԜ[>\R2($)z@)ҀzRjC"QڂE4c94 2"YP@stu6\ydoKidߝD5䟴/0Ea^J+>f3o5抟+Ap1׷ӯׅ_;!r y1ǓK3 +r"rN܌z5sk MޜW d~?^kٿfߧkLH?>JڇL=\4q8{O֞9i@3i?Jq'@GJiiǵ߯)@)Nh8ӥF9C[41!134Ҟ})hδ_SOidwa?v(i͠7? y< hK9H*K殟Ą̿%h馀צAn!S YzmvobRL"$Gk9WtdשҼ/񅞇jpAEo8خ HG;wF;={JI^~qpebXbI #Yš͝ijCr5#USe&T;*A9繫v4lb YjCrni5b*9@QIZ sSԧZI%spr<pz,uF;2ܘ8[H laQ bI?/A֧AyRv3PvdžpI TmrDSRmjƦ%LJY"SrDaeѕRF$dqZb9r6@MX@ (E4N'֘91<~kk6Zze'YeXny WI7Ɛx*+P9%K1T +a4q\Og.g.Fc'~Fޜu}sP=,W,&Y $M$x^4@^&mK\%I,~SbNx\/ tbRm=h)(x@V1׊KNjzuj/r4J H3VkInbK9a*Y AwA(8\Ǎ<;i}I ,,6+媗psz/;5 tE"SސM$NjN28M 3L`1N֜q@ )ǭ!|)lp*B8@h|/]h7=cKbhU 󂠃98;]nK= 6A#*uNyKiwFXq ? $*miڨ5mKSH Mw".6*HrIE9tk¯\LP%Rɢ,Ǻ|mf#fnۭ{~yqY##0ff늄qqujQ Rj\zy!!QN zS['8<1<:1B .(qҚsS9E3JBzuHcN1n81L:P!S8q4s@cqT*3H))Rv@㞴sRcސ|ސy)k1T=?xZj ۖc ygh''& TN;P"me-ԖєkҒ98T"`R8=1Lj VRY&eyctF0y3=P?۰F  R:@#M--aC9HIJ<7˷;qZ@מ,mU&K fh]s8>)be j0`ǫeNs=#S曨^fYL>D\<3H+ywb%C T^>NOU/tu'KG縉q`$`uhXt\mWV5 ڝ]^ؤҪBPI8`G5O\v hZ+ݩCaPk$H8[(QLO@ *'XmTNB[Uz W]Kux"!9eМT5ZNx/4襤iW[>ݛ&}N9 tV ;{85Y[@D)dr0V/C9xVƝ\o&[IŮ3=N9 DØI]vQY.`[y8hR[Ox 2Qm 5HZHrI* 8z烬5 +@U7HX s|77'5·z޿jqi& н.ѐ#aל:qDmcSoj[MAiQmЄW 0kͩOMe/'hdY'*EtoD懥Y\Y=Gܗa'# -c$jKv $Rrkƾ*x|g "m]D!m۾3#FN$_})fKuCEo]-ўgVo.4a>g2xNI_\[MnH/rx\y?_SWhv@\2%$d|AӚ-u %h^Mo!A/F)j:X-uwԎ';{61>TׄIm;-WQ[PJD#W!r ''c('fh!vh3j/y12JMϜ#%p>jѡ֢Եh70Kw0i~4j/"[3pۈ +S>iU*[꺔V+ryi'q<x $"㼚ͭH6p@ˀ !ixi'ӵkqKEJ_MwlotiVp^N7mv14N5űJ }+GIo5<-cݖui7r-9# VzZXxp M7Bk]6k( `қ⏉߆G^-ih w)y2$+s.u?J*w-c{(Q,z ǶMyηI׭:YZ@9;⁞GJ?dכ5ujz'imX7C ՝3"]]۽mD%6h?Z;漧j] 5 Yu̖$'@Iy+uIGcSgAB>jB86AV€ tY@VZ&?*'#qP:tOQ0 1QNQ0C֛ҞiҘ})q'Qq(4RANS hVfԯ>.ݮDcxGQ5{D>KeWRNc!AH}k1_x|/s<.dyU`A# ?S>mE!, E۷zۊ %Ɵ <6 Y"lF~Uu _YWtݭkSt9p8ݴ4}WQҤ-$,ͻFM3XokZܺehwlB:rk!=O)3Qq8.7wKhRfBPO\ƥ;;3Z7(*^y5dCcE<%ii&QleHP=KNdIxgvvzT 滏<7N;yO4:]XlX'6Bln'o)&mb-M}2 EFRq=EzX݅)1ڀ8 W:-ͽwV1$?f c 6^9dX:xOQHt$$ҾxCэilTz~Ӭ# eŁFAt~RVk ɧh509'ӊ{Ό|ua@ AiΥӡϡлIoe- sd1כh۲|]*Gh~i()b?Ƽb]0|ā?^^Ոϛ7?D9?/QXq7(6$_.$egxc%#c|> <9oEv0+tӘy9) c4a'LzғѓEH'Ln(jBqIHO/lo&h:I=S8ǵ)v4))XsH(0z ."R=s@')2{ C{Ss(\ rsL]8sN<)Ċ2F\>$'&9Jq6h #ib.3ZwJ~)6?*w◞oʔ#h a<qf qXz {UㅨҎd+qVZ&B桒)7'җ2*nXc*Fj #pJQ̀onjF~ DNB{N>## yo47 IRydq֐!Qӭ;iǵN3Jи >p @ z` J iN5"#Һ3R(6Q[Qڤ@E5QxFis!rNpOPHgsO (9]1Nts!RΝƟ2 *5R j5ns5VGPޗkImw>oNW C\VsGr][޽w2$DR ノv^X)r,$@]y 3ЎƨMwQisߴ V>lc.M4%-J<jr5czU$r9%״t뻩#K.ַѶY`BkԮ<1t=6KtVj49'!qy?2¾tmmR<1ʹF_z͞fyWGLo(?G5[ ֵ -VQԮVS*`35G@N9ڽV,t]>{k_=|~kM/2v/(J.j!Kp ;HnYPnyX%OLע?|5:v\4Hy{rG~5^,mV ScPB> n5m^}6/UV 6P)8( p+|=YwlKo( (%%@7`~5GJ|k-[RH.֘9w`1%)by<<9k N:K幐tN| ?iA5?m+b$;9 vg|9ͪXV]s;S=%džiu[i,ů;4{b<7KGHkKgg{o` Gk~u|}HE~Yu_oGFE?7f5-AmNXxAH=9Qq~ υIZ=l+o'`q>񶡭O'\jq[ZIyB6Urq3]-<;s`bVN:2>A鴌d}?g5[L[\-Ē;JPf$ p3ӵ8u{etB@Cv;z\Es؝.-H<O]5iY}//qmw 3778ր8oE֕jgKҖO,)D]'`ۓgLBu>8Κ@Á1z|+k7=D`3\.}iWp\X% dD*28?9-νgVNǧX&%K*)eiqI05xĺj0}C!6-hͅ-߼0oWa-BՍ-6H0.BձÌQT7NV+lK" YB8Q 0_kM5[{[=P[ Z+MG !9#\>(RtMm#WXp9 ^xe,=k-yk͡3E,~K A*ׇ}Hϛ]Kso!eG./+:z >/™e0PīAh?2AYM2-ɖosҽKQMι6KLeӢH > 8L2> ?h]\A۝{togăƪzx{^u5糎F+I3:Sy%W[^ xT$"C$p-Fݬ F߇Zjiwgw"T*&Մ~bT "oiPZMIn4z࿯8čY<3M.cuqMjάϜ O-UMuRSHΰ]9'|_ t}F;IjQ!Q7aeҀ2' Ŗypo(I9Gt+=Jd'E7e̫(B${U5/SRY(wXW$|` :Tmkj1gNA'm4)5ޑo]+a1s&q{Mzy5 z,O{krsO OOܧm`DahE@9/,Inq3\ G]Ois^^;YPbs+onthł<xmǭwzz<"6?qR!ED( ǡ?֊H/ G_ַ>xZ1ľyđg~(ų}Yy\:^Tfz-#ˋVujd=?'ԑsg4{i3cglZ?.9 qnƸ4DF w9i{i${Yt㎸?UFP3F4*`\,D' "6?m>c_*!wG[ӗa:~^o$NO,{o>{8=%~.86ɉ?"a1fAi6ެ!|vכr2G>Ⱦ'?ϸ{8J.>2h9=yN `qޏoS{8= |bCgp߮)^gN=7,f7ːdj[SqG=OEO.FOo.kdk$G#ާpq=#J4{d|uΕd `<D^'pbI1֐|aՊE>Gu!~'_XeqZ>dQK#F|טIFZGpq=/e ]̟i_)u:5ݹc^xL|={{P.=}z`ܺ530?ʔ`hV/ ץy>8Oϸ{8>3jЭБ3^r:S TtK?o(PRQ؃~i$OToZ$փ>ihǜڼ6g7܎=2Ziqr#dz:%s~MEy`y+TNyJuߧMVpGƛa[OG* 06zvISˆ?=cۭ}Ò'<A?'ҚfRs^+Wտ1MUpfLvRc.A']1 'ޞOGp|8>`촿-ѮpzO%|=*$w.DzZߤު+Q oK8a(_;HT8 d?CMV֊G{' m W|ƜʪN8=*i"=*xtRUV} x k}9H\ep^#yY3O|2Xb[0ON7*r?nMՒD{d|,|_}|}¼N ƫ~ >#xc;E𧏈m!r#ܓ/ lncT8L*gzc&yƥא$ |@?02W7 9?I2t>D{Mi6O$Z<cjGDk NNr֜/4{yGºܸjETںc}x]gJ#+}dG|/kiǑwkkiX>v{G"ơT(8GfOR%NҲ=.mULުbPn}Ň֤Wz&Wc,Z'eI>1}@,>Hmk E`60=T櫫P 1/zb(ft:>:L`HoPyB"B=z^{}B% ߝb5| ;ϥ:*>6<}0(ʀcZe=6 KQ}Bޚ͋#s*goΛǭ|eGPU=Y:G#UeC{}nbȞ.? 09^b]kX65k?ظk6g>_>}naq51jCO55sl:y^ޟ֦Hy|C2O 7?k_Xz뚙֦֟/fLwAx5kۦXmr֭. PÏMbf]1ɣtxs@[W'_W 5c _/ O"=|<} `wqIҼ5v=KQ~BG$|P~1+7={lL7$S|sO=*P}'7}j\\d^5ZBGF=6^1 4:N9g&E#?jum$6Ek!ͷnX WZm([h<4T_EQ; capitate; ovules 1-6/carpel; fruit a berry; (seed exposed early in development, testa fleshy - Liriope); ovules 2-6/carpel, axile/basal; n = 18, 2C = 8.62-24.65 pg.

    3/85: Ophiopogon (67). Mostly (warm) temperate South East Asia, the Philippines, esp. China.

    Synonymy: Ophiopogonaceae Meissner, Peliosanthaceae Salisbury

    7. Dracaeneae Dumortier

    Trees to rhizomatous herbs; roots orange or not, velamen +; (monocot secondary thickening +); vessels in stem 0; resin canals + [check]; plant glabrous; leaves 2-ranked/spiral, often petiolate, (fleshy); inflorescence racemose, (branched); (bracts 0), bracteoles 0 (+); T ± connate; A adnate to T tube; stigma capitate to 3-lobed; ovule 1/carpel; fruit a berry, endocarp persistent, sclerotised; testa obsolete; ?embryo; n = 19-21.

    1/170. Old World, a few species in Hawaii, Cuba and Central America.

    Synonymy: Dracaenaceae Salisbury, Sansevieraceae Nakai

    7. Rusceae Dumortier

    Shrubs to climbers; chrysophanol + [anthroquinone, in the roots]; roots with velamen, cuboidal styloids +; (vessels in stem 0); plant glabrous; leaves spiral, scarious, cladodes +; inflorescences axillary; flowers (imperfect): T free to connate; when connate, A adnate to T, filaments connate; staminate flowers: A (?3), anthers extrorse; (pollen inaperturate); pistillode +; carpellate flowers: staminodes +; placentation axile to parietal; ovules 2/carpel or 1-4/ovary, hypostase +; fruit a berry; testa disintegrates, tegmen thick-walled, exotegmen cells longitudinally and endotegmen transversely elongated; endosperm thick-walled, hemicellulosic, embryo short to medium; n = 20.

    3/8: Ruscus (6). Madeira and the Canary Islands to the Caspian Sea, scattered.Synonymy: Ruscaceae M. Roemer, nom. cons.

    Evolution: Divergence & Distribution. Biogeographical relationships in the the Dracaena group are of considerable interest. Pleomele (= Chrysodracon) from Hawaii is sister to the rest (e.g. Lu & Morden 2010, 2013, 2014), which raises all sorts of biogeographical questions (shades of Hillebrandia?), and in turn Central American species are sister to the remainder. There seems to have been extensive dispersal (and extinction) in this whole clade (Lu & Morden 2014). Lu and Morden (2014) noted several independent transitions to the arborescent habit (perhaps four times) and the development of cylindrical leaves (ca seven times).

    Pollination Biology & Seed Dispersal. The flowers of Aspidistra (Convallarieae), sometimes borne beneath the litter, have a relatively huge, fungiform stigma, the anthers being hidden below it (Endress 1995b; Vislobokov 2017). Flowers of some species of Aspidistra look rather those of some Aristolochiaceae or Burmanniaceae, while those of other species are more conventional and sub-rotate with the stamens and stigma/style grouped in the centre, and/or with a short corona at the apex of the perianth tube, with a massively longitudinally-ridged perianth, or with a balloon-like perianth that has a little opening at the apex. There may be anything from two to a dozen or more tepal lobes (see also Hou et al. 2009; Li 2004; Vislobokov et al. 2014a; Vislobokov 2017). Easy access to the inside of the flower is apparently blocked, and there is no nectar, rarely any appreciable (to humans) scent, no thermogenesis, and no distinctive UV colour patterning, at least in the few species examined (Vislobokov 2017). It has been suggested that such flowers are pollinated by amphipods (Conran & Bradbury 2007 and references, perhaps least likely), fungus gnats (Suetsugu & Sueyoshi 2017), the phorid fly Megaselia (Vislobokov et al. 2013), non-galling cecidomyiid midges (Cecidomyiidae, undetermined genus) which also lay eggs in the anthers, the larvae eating the pollen, or drosophilids (Vislobokov et al. 2014b; Vislobokov 2017). A remarkable and speciose genus in which new species are being described at quite a rate.

    Vegetative Variation. Vegetative variation is particularly impressive. Dracaeana is the only monocot known with a monocot cambium in its roots as well as its stems (Carlquist 2012a). Nolina also has secondary growth in the stem and is tree-like, and Beaucarnea, also tree-like, has a much swollen stem base. The initiation of the vascular system in the rhizome of Ophiopogon is similar to that in palm stems (Pizzolato 2009).

    The leaf blades of some species of Eriospermum have the most remarkable enations on the upper surface. These include fungiform protrusions on the small, crisped, ovate and fleshy blade (E. titanopsoides), a much-branched structure to 12 x 7.5 cm on a much smaller blade (E. ramosum), a bundle of enations with stellate hairs (E. dregei), and paired enations that look as if they should grace the helmets of the Valkyries (E. alcicorne: see Perry 1994 for more details). These may be adaptations for catching water from fog in the arid coastal regions of southwest Africa where they grow (Vogel & Müller-Doblies 2011). Classical morphology suggests that the fleshy leaf of Sansevieria (= Dracaena) develops from the leaf base, the apical portion of the leaf being represented by a Vorlaüferspitze (e.g. Kaplan 1997, vol. 2: chap. 16); depending on the species, the leaf can be developed predominantly from the base (and is flattened) or from the apex (and is terete: Kaplan 1973). Many other taxa, including Maianthemum, have more or less broadly elliptic leaf blades.

    Ruscus and its immediate relatives have cladodes, the flowers being born in the middle of a tough, more or less elliptical leaf-like structure. The prophylls are lateral or in some interpretations completely adnate to the axillary shoot, together they form an expanded cladode (Arber 1924a, 1930), or they are homeotic structures (Cooney-Sovetts & Sattler 1987). In any event, the leaves proper are small and scarious and subtend the cladode-like structures (c.f. Asparagus above).

    Genes & Genomes. See Yamashita and Tamura (2004) for chromosomes in Convallarieae and G.-Y. Wang et al. (2013) for chromosomes in Ophiopogoneae.

    In Ruscus and immediate relatives a mitochondral cox2 intron is missing (Kudla et al. 2002).

    Chemistry, Morphology, etc. Peliosanthes teta, perhaps the only species in the genus, has an ovary that varies from superior to inferior (Jessop 1976: some recognise more species in the genus). The absence of septal nectaries in some Nolinoideae may be connected with the presence of prominent ovary wall obturators; the latter are possibly derived from the former. In Liriope, etc. (Ophiopogoneae), the seeds, with their fleshy testa, are exposed early in development, so they are semi-gymnospermous.

    Additional information can be found in Bos (1998: Dracaenaceae), Conran and Tamura (1998: Convallariaceae), Bogler (1998: Nolinaceae), Duthie (1940), A.-M. Lu (1985) and Dahlgren (in Dahlgren & Van Wyk 1988) all Eriospermum, Yeo (1998: Ruscaceae), Judd et al. (2002: general), Judd (2003: Ruscaceae S.E. U.S.A.), Rudall & Campbell (1999: floral morphology), van der Ham (1994: distinctive pollen of Peliosanthes), Stenar (1934, 1953), Wunderlich (1950), Björnstad (1970) and Ebert and Greilhuber (2006: references), all embryology, and Tillich (1995: seed, etc.).

    Phylogeny The placement of Eriospermum (for which, see Perry 1994) as sister to the rest of Nolinoideae has quite strong support (Seberg et el. 2012, but c.f. ML analyses, Eriospermum linking quite strongly with Asparagoideae). It might be thought that it and and the very distinct Comospermum are likely to be sister to the rest of the subfamily since both have capsules and hairy seeds. Note, however, that the hairs on the seeds of the two genera develop in different ways, and Comospermum has two tenuinucellate apotropous ovules/carpel, n = 20 vs. n = 7, and so on. The two genera seem to be unrelated (Rudall 1999), and they do not come out close is studies such as those of Seberg et al. (2012). The poorly understood Peliosanthes may then be sister to the rest of the family (molecular data alone, e.g. Jang & Pfosser 2002). However, in several analyses it groups with Ophiopogoneae (e.g. Seberg et al. 2012; G.-Y. Wang et al. 2014; Floden & Schilling 2018: support strong).

    Relationships within other Nolinoideae are poorly resolved, although major clades largely correspond with tribes (see Conran & Tamura 1998). However, Convallarieae may be paraphyletic with Aspidistreae and Ruscus and relatives embedded (Yamashita & Tamura 2000: Eriospermum not included; Rudall et al. 2000b; Seberg et al. 2012). Convallaria was also included in Aspidistreae by Floden and Schilling (2018: support for the clade strong, Ruscus not sampled). Meng et al. (2014) discussed relationships within Polygonatum and its relatives (Polygonateae). This tribe probably does not include Maianthemum, which may be best placed with Ophiopogoneae (support weak), otherwise relationships are [Disporopsis [Polygonatum + Heteropolygonatum]] (Floden & Schilling 2018: plastid genomes). For relationships of ex-Nolinaceae, -Dracaenaceae, etc., see also Bogler and Simpson (1996). Dracaena can be circumscribed to include most of Pleomele and Sanseviera, with Pleomele from Hawaii (= Chrysodracon) sister to the whole of the rest of the group (e.g. Lu & Morden 2010, 2013, 2014; c.f. Baldwin & Webb 2016); this clade may be sister to Ruscus and relatives. Rojas-Piña et al. (2014) evaluate relationships around Beaucarnea and Nolina; there are three morphologically distinctive clades of tree-like plants there, although support for the monophyly of Nolina is not strong.

    Classification. The tribal classification above does not pretend to be exhaustive, and it is not certain that all tribes are monophyletic. Maianthemum includes Smilacina here, and the whole clade is well supported as being monophyletic (Kim & Lee 2007; Meng et al. 2008). A broad circumscription is appropriate aince there is little support for groupings within it.

    Previous Relationships. There has been extsnsive confusion between Dracaena (Dracaeneae) and Cordyline (Lomandroideae).