The Shaw Professional Series
Green Stormwater Solutions Case Study:

Webster University East Academic Building

Bonnie Roy – Principal - SWT Design
Craig A. Miller, Sr. - Project Manager - Webster University
Jeff DePew - Adjunct Faculty - Webster University
Webster University East Academic Building, St. Louis, MO

Rain Garden

Green Roof

Green Roof

Rain Garden

Permeable Pavers
Webster University East Academic Building, St. Louis, MO
Stormwater Management techniques combine to reduce Peak Runoff Rate by 18%.

With these improvements, the project can now treat, on-site, the water from a 15.2 hour rain event. Pre-Construction, the site could manage the water from a 10.6 hour rain event.
Webster University East Academic Building, St. Louis, MO
The existing trees reduce atmospheric carbon by 53,544 lbs. annually.

At maturity, the project site will reduce atmospheric carbon by 61,522 lbs. annually, a 6.9% increase.
At maturity, the trees on site will intercept 1,475,482 gallons of rainwater per year. This amount of water is equivalent to 2.2 Olympic Swimming Pools.
Tree Rainwater Interception combines with surface permeability and other intended stormwater management features to reduce Peak Runoff Rates by 21.1% Pre-Construction and 82.9% at Maturity.
Webster University East Academic Building, St. Louis, MO
Webster University East Academic Building, St. Louis, MO
Webster University East Academic Building, St. Louis, MO

- Sense of Place
- New Academic
- Accessibility
- Expansive View
- Engagement
- Native Landscape
- Resource Management
- Open Space
- Human-Scaled
- Material Sensibility
- Walkability
In 2013, Anheuser Busch gifted a generous donation to Webster University in support of the rain garden and its physical representation of water quality and management.