Scientists visit meteorite impact crater in the wilds of Bolivia By T. J. Killeen

In perhaps the remotest and wildest part of the Bolivian lowlands, in an area hundreds of kilometers from the closest town, NASA scientists have identified what they believe to be the youngest complex meteorite impact crater on earth. Based on what is known about the geology of the region, they believe the meteorite slammed into the Earth sometime between 5,000 and 20,000 years ago, making it the youngest "large" impact crater on Earth. The crater is approximately 8 km across and was produced by the collision of a meteorite about 200 m in diameter. The impact released energy of approximately 500 to 1000 megatons of TNT; in comparison, a hydrogen bomb is equivalent to only one megaton, while the atomic bomb that exploded over Hiroshima, Japan released only 20 kilotons. The crater was originally identified in the mid-1980s with satellite imagery, but a previous attempt to visit the site in 1987 was unsuccessful due to the remoteness of the locality.

Figures 1. A map showing the position of the Araona Impact Crater.

The goal of the second expedition was to verify the existence of the crater (scientists are 95% confident that it is) and to gather data from the site on the nature of the meteorite that caused it. The expedition was organized by Tim

Killeen, formerly with the Missouri Botanical Garden, and Compton Tucker, a specialist in remote sensing technology with NASA's Goddard Space Flight Center. Both Tucker and Killeen have been working in Bolivia for the past several years mapping vegetation types, as part of an effort to understand the processes that lead to the development of different habitats. Accompanying them was Peter Wazelewski, a specialist in meteorite impact craters, who was interested in visiting the only (potential) crater known to exist in alluvial sediments. All other craters are found in hard rock formations, since craters formed by meteroite impacts in unconsolidated sediments are erased quickly by erosion and sedimentation.

Figure 2. A false-color composite of a Landsat TM satellite image showing the impact crater (red colors are forest vegetation, blues are savanna grasslands). Soil samples (open circles) were taken along a trail (irregular line in the upper right hand quadrant), between "old growth" Amazonian forest dominated by *Bertholetia exclesior* (Brazil nut), across transitional forest types dominated by *Phenakospermum guianensis* (Patujú), and extending into the savanna vegetation in the center of the crater. A proxy soil pit in open treeless grassland was taken at the end of the airstrip at the Araona village (lower left quadrant.

The expedition reached the crater impact site after traveling by jet airliner, small airplane, motor boat, dugout canoe, and finally by cutting a 15 km long trail through the forest. Field data gathered during the expedition supports the hypothesis that the circular feature is a meteorite impact crater. The rings visible

on the satellite image correspond to slight ridges not more than 2 m in elevation, but sufficiently higher to support upland forest vegetation, while the interior of the crater is either inundated savanna or flooded forest. However, only sophisticated methods using seismology and magnetometry can definitively prove the existence of a meteorite or meteorite fragments buried beneath hundreds of meters of alluvial deposits.

NASA scientists were accompanied by biologists from the Missouri Botanical Garden, The Field Museum of Natural History, and the Noel Kempff Mercado Natural History Museum in Santa Cruz, Bolivia. The area is especially interesting to them because it is in a region unspoiled by modern man and has never been visited by biologists. The only community within a 200 km radius of the crater is a small village of about 40 people of the Araona indigenous group, which is situated just 30 km upstream on the Río Manupari (see Figure 1 and 2). The biological specimens collected have been incorporated into the growing collections from northern Bolivia (see table 1 for list of bird species collected or observed).

Table 1. List Bird species observed orcollected the Rio Manupare Region

Таха	Habitat		
TINAMIFORMES, TINAMIDAE			
Tinamus major	ft		
Tinamus tao	fh		
Crypturellus cinereus	ft,fh		
Crypturellus parvirostris	cd,cf,cp		
Crypturellus soui	fh,ft,fe		
Crypturellus undulatus			
Crypturellus undulatus	fh,ft		
CICONIIFORMES, ARDEIDAE			
Tigrisoma lineatum	ri,rm,sm		
Nycticorax pileatus	rm		
Ardeola ibis	rm,cf		
Ardeola ibis	rm,cf		
Butorides striatus	rm, ma		
Egretta alba	rm, ma		
Ardea cocoi	rm,sm		
CICONIIFORMES, THRESKIORNITHIDAE			
Mesembrinibis cayennensis	cf,rm,ma		
ANSERIFORMES, ANATIDAE			
Cairina moschata	rm,ma		
FALCONIFORMES, CATHARTI	DAE		
Cathartes aura	u		
Cathartes melambrotus	fh		
Coragyps atratus	fh,ft,fd,cd,sg		
Sarcoramphus papa	fh		
FALCONIFORMES, ACCIPITRI	DAE		
Elanoides forficatus	fh,ft,fd		
lctinia plumbea	fh,fd,fe		
Geranospiza caerulescens	ft		

Leucopternis kuhli	fh
Buteo magnirostris	u
Spizaetus ornatus	fh
FALCONIFORMES, FALCONIDAE	
Herpetotheres cachinnans	fe,cf,cp
Micrastur ruficollis	fh,fi
Falco rufigularis	fh.fe
GALLINIFORMES,	
CRACIDAE	
Penelope jacquacu	fh,ft
Aburria pipile	fh
Crax (mitu) tuberosa	fh
GALLINIFORMES, PHASIANIDAE	
Odontophorus stellatus	fh
GRUIFORMES, RALLIDAE	
Aramides cajanea	ft,rm
GRUIFORMES, HELIORNITHIDAE	
Heliornis fulica	rm,ma
GRUIFORMES, EURYPYGIDAE	
Eurypyga helias	rm,sm
CHARADRIIFORMES, CHARADRII	DAE
Vanellus chilensis	cf,rm
CHARADRIIFORMES, SCOLOPAC	IDAE
Bartramia longicauda	fe,cd,cp
Tringa solitaria	cf,rm
Actitis macularia	rm
CHARADRIIFORMES, COLUMBID	AE
Columba cayennensis	fg,fe,cf,cp
Columba plumbea	fh
Columba subvinacea	fh,ft
Columbina picui	fe,sg
Columbina talpacoti	fe,cp,sg
Leptotila rufaxilla	fh,ft,fd,fe
Geotrygon montana	fh,ft

PSITTACIFORMES, PSITTACIDAE

Ara ararauna	fh,ft,fd,fg
Ara chloroptera	fh
Ara macao	fh.ft
Ara manilata	ft
Ara severa	fh,ft
Ara nobilis	fg
Aratinga aurea	fg,cd
Aratinga leucophthalmus	ft,fg
Pyrrhura picta	ft
Brotogeris cyanoptera	ft
Pionites leucogaster	fh
Pionopsitta barrabandi	fh
Pionus menstruus	fh
Amazona ochrocephala	ft
CUCULIFORMES.	
CUCULIDAE	
Piava cavana	fh.ft
Piava minuta	fe
Crotophaga ani	fe cf ma rm s
erotopnaga ani	no,or,ina,ini,o
Crotophaga major	ma rm sm
STRINGIEORMES	ma,m,om
STRIGIDAE	
Otus watsonii	fh ft
Lophostrix cristata	fh
Pulsatrix perspicillata	fh
Nyctibius acthorous	fh
Nyclibius acandis	fh fd
Dedeger negunde	
Nuctidramus albiadus	cp,n
Nycliai onius albicolus	ig,ie
Coprimulauo rufuo	lii fa fh
Caprimulgus Tulus	ie,in
Capilinuigus	le
	^
APODIFORIVIES, APODIDADE	A
	u
	u
Chaetura egregia	u ef
	CT
APODIFORMES, TROCHILIDA	E a a
Phaethornis supercilliosus	fh,ft
Phaethornis ruber	te
I halurania furcata	fh,ft
Hylocharis cyanus	it ft
TROGONIFORMES, TROGON	IDAE
Trogon melanurus	fh,ft
Trogon viridis	fh,ft
CORACIIFORMES, ALCEDINII	DAE
Ceryle torquata	rm
Chloroceryle aena	rm,sm
Chloroceryle amazona	rm
Chloroceryle americana	rm,ma
Chloroceryle inda	rm,sm

CORACIIFORMES, MOMOTIDAE	
Momotus momota	fh,ft
PICIFORMES, GALBULIDAE	
Galbula cyanescens	fh,fd
Galbula dea	fh
PICIFORMES, BUCCONIDAE	
Melacoptila semicincta	fh
Monasa morphoeus	fh
Monasca nigrifrons	ft
Chelidontera tenebrosa	fe rm
Notharchus macrorhynchos	fh
PICIEORMES CAPITONIDAE	
Capito niger	fh
PICIEORMES RAMPHASTIDAE	
Pteroalossus	fb
bosubarnaosii	111
Deaunannaesii Dtoroglossus flavirostris	fh ft
Pteroglossus inscriptus	fh
Flerogiossus inscriptus	111 fb
Selenidera reinwardili Domohootoo tuoonuo	۲۲ ۲۲ ۱۱۱
Ramphastos ucanus	IN,IU
	în,ît
	6
Melanerpes cruentatus	te
Piculus chrysochloros	th,ft
Celeus elegans	ft,fh
Celeus grammicus	ft
Campephilus rubicollis	th,ft
PASSERIFORMES, DENDROCOLA	PTIDAE
Dendrocincla fuliginosa	fh,ft
Dendrocincla merula	fh
Sittasomus griseicapillus	cd,fg,fd
Glyphorynchus spirurus	fh,ft
Dendrexetastes rufigula	fh
Xiphocolaptes	fh
promeropirhynchus	
Xiphorhynchus guttatus	fh,ft,fd
Xiphorhynchus spixii	fh
PASSERIFORMES, FURNARIIDAE	
Synallaxis rutilans	fh,ft
Ancistrops strigilatus	
Automolus ochrolaemus	fh,ft
Xenops minutus	fh,ft
Xenops milleri	fh,ft
PASSERIFORMES, FORMICARIIDA	Ε
Cymbilaimus lineatus	fh
Taraba major	fd,ft,fe
Thamnophilus aethiops	fh
Thamnophilus amazonicus	fh
Thamnophilus schistaceus	fh
Myrmotherula longipennis	ft
Myrmotherula axillaris	fh,ft
Myrmotherula brachyura	fh
Myrmotherula mentriesii	fh,ft
Myrmotherula sclateri	ft
Cercomacra cinerascens	fh,ft
Myrmoborus myotherinus	
· ·	

Myrmoborus leucophrys	ft	Gymnoderus foetidus fh,ft
Hypocnemis cantator	fh,ft	lodopleura isabellae
Hypocnemoides	ft	PASSERIFORMES, HIRUNDINIDAE
maculicauda		Progne chalybea u
Sclateria naevia	ft,sm	Progne tapera u
Myrmeciza hemimelaena	fh,ft	Atticora fasciata ri,rm
Hylophylax poecilinota	fh,ft	Stelaidopteryx ruficollis ri,rm,cp
Gymnopithys salvini	fh	Riparia riparia ri.rm.cp
Dichrozona cincta		PASSERIFORMES, TROGLODYTIDAE
Formicarius colma	fh	Thrvothorus genibarbis fh ft
PASSERIFORMES, TYRAMNIDAE		Troglodytes aedon fe sg bg
Myiopagis gaimardii	fh,ft	Microcerculus marginatus fh
Mviopagis viridicata	fh.ft	PASSERIEORMES EMBERIZIDAE
Mionectes oleagineus	fh.ft	
Leptopogon	fh.ft	Ammodramus humeralis cn
amaurocephalus	,	
Mviornis ecaudatus	fe	
Hemitriccus zosterons	fh ft	Soltator movimuo
Hemitriccus ichannis?	cd cn	
Remphotrigon ruficeude	fh ft	PASSERIFURINES, EIVIDERIZIDAE,
Tolmomvias polioconhalus	fb	
Onveherbynebue eerenetue	fh	Hernithraupis havicollis fn,ft
Dirychonnynchus coronalus Direacabalua rubinus	fe en	Tachyphonus cristatus
	ie,cp	Habia rubica fh,tt,td
	m.ma	Ramphocelus carbo fe,sg
Attila bolivianus	π	Thraupis palmarum fe,sg
Attila spadiceus	fn,ft	Thraupis sayaca fe,sg,ft
Rhytipterna simplex	fh,ft	Euphonia chlorotica cp,cd,fe
Laniocera hypopyrra	fh,ft	Tangara velia fh,ft
Mylarchus tyrannulus	fh,ft,fe	Tangara mexicana fh,ft
Myiodynastes (maculatus)	fh,ft,fg	Dacnis cayana fh,ft
solitarius		Tersina viridis fe,rm
Empidonomus	fh,ft,fg	PASSERIFORMES, EMBERIZIDAE,
aurantioatrocristatus		PARULINAE
Empidonomus varius	fh,ft,fg	Phaeothlypis fulvicauda fh,sm
Tyrannus melancholicus	u	PASSERIFORMES, VIREONIDAE
Tyrannus savana	rm,cp,cd	Vireo (olivaceus) chivi bt bi
Tyrannus tyrannus		Hylophilus hypoxantha bt
Pachyramphus minor	fh	Hylophilus semicinereus bt bm
Tityra semifasciata	fh,ft,fg	PASSERIFORMES, ICTERIDAE
'PASSERIFORMES,		Psarocolius bifasciatus bi bt
PIPRIDAE		Psarocolius angustifros bi bi
Schiffornis major	ft	Cacicus cola
Schiffornis turdidus	fh,ft	Soonhiduro oruzivoro hi bo mo
Piprites chloris	fh	ft terms firms
Tyranneutes stolzmanni	fh	fh -leure stature forest
Heterocercus linteatus	ft	III = IOWEI Statule lolest
Machaeropterus	fh.ft	It, In (order altered if species more prevelant in
pvrocephalus	,	one or the other.)
Pipra fasciicauda	fh.ft	cd, cf, $cp = cerrado$, seasonally flooded grassland,
Pipra rubocapilla	fh ft	campo
PASSERIFORMES, COTINGIDAE	,	te = torest edge
Linaugus vociferans	fh ft	ri, rm, sm river, river margin, stream margin
Augus voorerans Augrula nurnurata	111,1L f+	ma = marsh

The expedition also allowed Killeen, Tucker and a Bolivian student, Teddy Siles, to study the past ecological history of the region. The crater is situated on the

interface of the Amazon forest and the vast open savannas of eastern Bolivia. A preliminary evaluation of the images identified patches of low forest north of the

Figure 3. Diagram of soil profiles established a long a savanna – forest ecotone near the Araona Impact Crater on the Manupari River (La Paz, Bolivia).

current savanna – forest edge, leading them to hypothesize that the forest – forest ecotone has migrated South in recent history. The expedition provided them with a unique opportunity to test this hypothesis using soil samples collected along a transect across the savanna forest ecotone.

Table 2. Summary of the vegetation structure at seven soil sample sites

 established on the ecotone transect.

	Woody Cover	Density	Mean Height	Basal Area
M-1 High Forest	> 100 %	48	23	3.15
M-2 High Forest	> 100 %	52	25	4.39
M-3 Late Secondary Forest	> 100 %	53	22	1.98
M-4 Early Secondary Forest	> 100 %	53	19	2.31
M-5 Inundated Transitional Forest	> 100 %	64	8	1.43
M-6 Savanna Scrub	25 - 30 %	2	2	0.06
M-7 Open Grassland	0 - 5 %	0	-	-

Soil organic matter (SOM) provides a record of the vegetation that occupied a site in the past. The grass species in the savanna at Noel Kempff Park use the C_4 metabolic pathway and therefore contains an elevated amount of the stable

carbon isotope ¹³C when compared to the forest plants. The relative amount of ¹³C is quantified as the ratio of ¹³C to ¹²C and expressed as a per mil deviation from a geological standard (dC^{13}). Savanna grass tissue has a dC^{13} value of approximately -12, while forest plants range from -25 to -30. Over time, the SOM at a site will mirror the stable carbon isotope value of the vegetation growing on it. For example, SOM in an area, which has been covered with tropical savanna grassland will have a dC^{13} value approaching that of the live savanna grass tissue. In the event of a change in vegetation, the SOM will serve as an indicator of past vegetation at the site. If SOM with a dC^{13} value of between -20 and -25 were found under savanna vegetation, it would indicate that the area was previously occupied by forest vegetation.

Preliminary evidence from the soils samples taken indicates that the Amazon forest has expanded southward in recent geological time, an indication of past climate change (Figure 3). Even the most northern soil pits (M-1, M-2 and M-3) taken some 20 km North of the current boundary showed some evidence of C4 grasses in the lowest (and oldest) part of the soil profile, while the proxy sample taken in open grassland south of the airstrip near the Araona Village (M-7) showed no evidence of recent forest cover. The transitional sites all show evidence of past movement in the forest – savanna ecotone. The two sites that are currently forested (M-4 and M-5) had dC13 values in the upper horizon typical of forest vegetation, while deeper soil profiles were more like those found in the savanna soils (M-7). Similarly, the savanna patch found in the center of the crater had top soil characteristics intermediate to open grassland and closed forest, reflecting the its grass sward and the presence of a numerous shrubs and herbaceous forbs (Table 2).