EMBRYOPSIDA Pirani & Prado

Gametophyte dominant, independent, multicellular, not motile, initially ±globular; showing gravitropism; acquisition of phenylalanine lysase [PAL], microbial terpene synthase-like genes +, phenylpropanoid metabolism [lignans +, flavonoids + (absorbtion of UV radiation)], xyloglucans in primary cell wall, side chains charged; plant poikilohydrous [protoplasm dessication tolerant], ectohydrous [free water outside plant physiologically important]; thalloid, leafy, with single-celled apical meristem, tissues little differentiated, rhizoids +, unicellular; chloroplasts several per cell, pyrenoids 0; glycolate metabolism in leaf peroxisomes [glyoxysomes]; centrioles/centrosomes in vegetative cells 0, microtubules with γ-tubulin along their lengths [?here], interphase microtubules form hoop-like system; metaphase spindle anastral, predictive preprophase band + [with microtubules and F-actin; where new cell wall will form], phragmoplast + [cell wall deposition centrifugal, from around the anaphase spindle], plasmodesmata +; antheridia and archegonia jacketed, surficial; blepharoplast +, centrioles develop de novo, bicentriole pair coaxial, separate at midpoint, centrioles rotate, associated with basal bodies of cilia, multilayered structure + [4 layers: L1, L4, tubules; L2, L3, short vertical lamellae] (0), spline + [tubules from L1 encircling spermatid], basal body 200-250 nm long, associated with amorphous electron-dense material, microtubules in basal end lacking symmetry, stellate array of filaments in transition zone extended, axonemal cap 0 [microtubules disorganized at apex of cilium]; male gametes [spermatozoids] with a left-handed coil, cilia 2, lateral; oogamy; sporophyte multicellular, cuticle +, plane of first cell division transverse [with respect to long axis of archegonium/embryo sac], sporangium and upper part of seta developing from epibasal cell [towards the archegonial neck, exoscopic], with at least transient apical cell [?level], initially surrounded by and dependent on gametophyte, placental transfer cells +, in both sporophyte and gametophyte, wall ingrowths develop early; suspensor/foot +, cells at foot tip somewhat haustorial; sporangium +, single, terminal, dehiscence longitudinal; meiosis sporic, monoplastidic, MTOC [MTOC = microtubule organizing centre] associated with plastid, sporocytes 4-lobed, cytokinesis simultaneous, preceding nuclear division, quadripolar microtubule system +; wall development both centripetal and centrifugal, sporopollenin + laid down in association with trilamellar layers [white-line centred lamellae; tripartite lamellae], >1000 spores/sporangium; nuclear genome size <1.4 pg, main telomere sequence motif TTTAGGG, LEAFY and KNOX1 and KNOX2 genes present, ethylene involved in cell elongation; chloroplast genome with close association between trnLUAA and trnFGAA genes [precursors for starch synthesis], tufA gene moved to nucleus.

Many of the bolded characters in the characterization above are apomorphies of subsets of streptophytes along the lineage leading to the embryophytes, not apomorphies of crown-group embryophytes per se.

All groups below are crown groups, nearly all are extant. Characters mentioned are those of the immediate common ancestor of the group, [] contains explanatory material, () features common in clade, exact status unclear.


Abscisic acid, L- and D-methionine distinguished metabolically; pro- and metaphase spindles acentric; sporophyte with polar transport of auxins, class 1 KNOX genes expressed in sporangium alone; sporangium wall 4≤ cells across [≡ eusporangium], tapetum +, secreting sporopollenin, which obscures outer white-line centred lamellae, columella +, developing from endothecial cells; stomata +, on sporangium, anomocytic, cell lineage that produces them with symmetric divisions [perigenous]; underlying similarities in the development of conducting tissue and of rhizoids/root hairs; spores trilete; shoot meristem patterning gene families expressed; MIKC, MI*K*C* genes, post-transcriptional editing of chloroplast genes; gain of three group II mitochondrial introns, mitochondrial trnS(gcu) and trnN(guu) genes 0.

[Anthocerophyta + Polysporangiophyta]: gametophyte leafless; archegonia embedded/sunken [only neck protruding]; sporophyte long-lived, chlorophyllous; cell walls with xylans.


Sporophyte well developed, branched, branching apical, dichotomous, potentially indeterminate; hydroids +; stomata on stem; sporangia several, terminal; spore walls not multilamellate [?here].


Vascular tissue + [tracheids, walls with bars of secondary thickening].


Sporophyte with photosynthetic red light response, stomata open in response to blue light; plant homoiohydrous [water content of protoplasm relatively stable]; control of leaf hydration passive; plant endohydrous [physiologically important free water inside plant]; (condensed or nonhydrolyzable tannins/proanthocyanidins +); xyloglucans with side chains uncharged [?level], in secondary walls of vascular and mechanical tissue; lignins +; stem apex multicellular, with cytohistochemical zonation, plasmodesmata formation based on cell lineage; tracheids +, in both protoxylem and metaxylem, G- and S-types; sieve cells + [nucleus degenerating]; endodermis +; leaves/sporophylls spirally arranged, blades with mean venation density ca 1.8 mm/mm2 [to 5 mm/mm2], all epidermal cells with chloroplasts; sporangia adaxial, columella 0; tapetum glandular; ?position of transfer cells; MTOCs not associated with plastids, basal body 350-550 nm long, stellate array in transition region initially joining microtubule triplets; suspensor +, shoot apex developing away from micropyle/archegonial neck [from hypobasal cell, endoscopic], root lateral with respect to the longitudinal axis of the embryo [plant homorhizic].


Sporophyte endomycorrhizal [with Glomeromycota]; growth ± monopodial, branching spiral; roots +, endogenous, positively geotropic, root hairs and root cap +, protoxylem exarch, lateral roots +, endogenous; G-type tracheids +, with scalariform-bordered pits; leaves with apical/marginal growth, venation development basipetal, growth determinate; sporangium dehiscence by a single longitudinal slit; cells polyplastidic, MTOCs diffuse, perinuclear, migratory; blepharoplasts +, paired, with electron-dense material, centrioles on periphery, male gametes multiciliate; chloroplast long single copy ca 30kb inversion [from psbM to ycf2]; mitochondrion with loss of 4 genes, absence of numerous group II introns; LITTLE ZIPPER proteins.


Sporophyte woody; stem branching lateral, meristems axillary; lateral root origin from the pericycle; cork cambium + [producing cork abaxially], vascular cambium bifacial [producing phloem abaxially and xylem adaxially].


Plants heterosporous; megasporangium surrounded by cupule [i.e. = unitegmic ovule, cupule = integument]; pollen lands on ovule; megaspore germination endosporic [female gametophyte initially retained on the plant].


Plant evergreen; nicotinic acid metabolised to trigonelline, (cyanogenesis via tyrosine pathway); microbial terpene synthase-like genes 0; primary cell walls rich in xyloglucans and/or glucomannans, 25-30% pectin [Type I walls]; lignin chains started by monolignol dimerization [resinols common], particularly with guaiacyl and p-hydroxyphenyl [G + H] units [sinapyl units uncommon, no Maüle reaction]; root stele diarch to pentarch, xylem and phloem originating on alternating radii, cork cambium deep seated; stem apical meristem complex [with quiescent centre, etc.], plasmodesma density in SAM 1.6-6.2[mean]/μm2 [interface-specific plasmodesmatal network]; eustele +, protoxylem endarch, endodermis 0; wood homoxylous, tracheids and rays alone, tracheid/tracheid pits circular, bordered; mature sieve tube/cell lacking functioning nucleus, sieve tube plastids with starch grains; phloem fibres +; cork cambium superficial; leaf nodes 1:1, a single trace leaving the vascular sympodium; leaf vascular bundles amphicribral; guard cells the only epidermal cells with chloroplasts, stomatal pore with active opening in response to leaf hydration, control by abscisic acid, metabolic regulation of water use efficiency, etc.; axillary buds +, exogenous; prophylls two, lateral; leaves with petiole and lamina, development basipetal, lamina simple; sporangia borne on sporophylls; spores not dormant; microsporophylls aggregated in indeterminate cones/strobili; grains monosulcate, aperture in ana- position [distal], primexine + [involved in exine pattern formation with deposition of sporopollenin from tapetum there], exine and intine homogeneous, exine alveolar/honeycomb; ovules with parietal tissue [= crassinucellate], megaspore tetrad linear, functional megaspore single, chalazal, sporopollenin 0; gametophyte ± wholly dependent on sporophyte, development initially endosporic [apical cell 0, rhizoids 0, etc.]; male gametophyte with tube developing from distal end of grain, male gametes two, developing after pollination, with cell walls; female gametophyte initially syncytial, walls then surrounding individual nuclei; embryo cellular ab initio, suspensor short-minute, embryonic axis straight [shoot and root at opposite ends; plant allorhizic], cotyledons 2; embryo ± dormant; chloroplast ycf2 gene in inverted repeat, trans splicing of five mitochondrial group II introns, rpl6 gene absent; whole nuclear genome duplication [ζ - zeta - duplication], two copies of LEAFY gene, PHY gene duplications [three - [BP [A/N + C/O]] - copies], 5.8S and 5S rDNA in separate clusters.


Lignans, O-methyl flavonols, dihydroflavonols, triterpenoid oleanane, apigenin and/or luteolin scattered, [cyanogenesis in ANA grade?], lignin also with syringyl units common [G + S lignin, positive Maüle reaction - syringyl:guaiacyl ratio more than 2-2.5:1], hemicelluloses as xyloglucans; root apical meristem intermediate-open, pith relatively inconspicuous, lateral roots initiated immediately to the side of [when diarch] or opposite xylem poles; origin of epidermis with no clear pattern [probably from inner layer of root cap], trichoblasts [differentiated root hair-forming cells] 0, hypodermis suberised and with Casparian strip [= exodermis]; shoot apex with tunica-corpus construction, tunica 2-layered; starch grains simple; primary cell wall mostly with pectic polysaccharides, poor in mannans; tracheid:tracheid [end wall] plates with scalariform pitting, wood parenchyma +; sieve tubes enucleate, sieve plate with pores (0.1-)0.5-10< µm across, cytoplasm with P-proteins, not occluding pores of plate, companion cell and sieve tube from same mother cell; ?phloem loading/sugar transport; nodes 1:?; dark reversal Pfr → Pr; protoplasm dessication tolerant [plant poikilohydric]; stomata brachyparacytic [ends of subsidiary cells level with ends of pore], outer stomatal ledges producing vestibule, reduction in stomatal conductance with increasing CO2 concentration; lamina formed from the primordial leaf apex, margins toothed, development of venation acropetal, overall growth ± diffuse, secondary veins pinnate, fine venation hierarchical-reticulate, (1.7-)4.1(-5.7) mm/mm2, vein endings free; flowers perfect, pedicellate, ± haplomorphic, protogynous; parts free, numbers variable, development centripetal; P +, ?insertion, members each with a single trace, outer members not sharply differentiated from the others, not enclosing the floral bud; A many, filament not sharply distinguished from anther, stout, broad, with a single trace, anther introrse, tetrasporangiate, sporangia in two groups of two [dithecal], each theca dehiscing longitudinally by a common slit, ± embedded in the filament, walls with at least outer secondary parietal cells dividing, endothecium +, cells elongated at right angles to long axis of anther; tapetal cells binucleate; microspore mother cells in a block, microsporogenesis successive, walls developing by centripetal furrowing; pollen subspherical, tectum continuous or microperforate, ektexine columellate, endexine lamellate only in the apertural regions, thin, compact, intine in apertural areas thick, pollenkitt +; nectary 0; carpels present, superior, free, several, ascidiate [postgenital occlusion by secretion], stylulus at most short [shorter than ovary], hollow, cavity not lined by distinct epidermal layer, stigma ± decurrent, carinal, dry; suprastylar extragynoecial compitum +; ovules few [?1]/carpel, marginal, anatropous, bitegmic, micropyle endostomal, outer integument 2-3 cells across, often largely subdermal in origin, inner integument 2-3 cells across, often dermal in origin, parietal tissue 1-3 cells across, nucellar cap?; megasporocyte single, hypodermal, functional megaspore lacking cuticle; female gametophyte lacking chlorophyll, not photosynthesising, four-celled [one module, nucleus of egg cell sister to one of the polar nuclei]; ovule not increasing in size between pollination and fertilization; pollen grains land on stigma, bicellular at dispersal, mature male gametophyte tricellular, germinating in less than 3 hours, pollen tube elongated, unbranched, growing between cells, growth rate (20-)80-20,000 µm/hour, apex of pectins, wall with callose, lumen with callose plugs, penetration of ovules via micropyle [porogamous], whole process takes ca 18 hours, distance to first ovule 1.1-2.1 mm; male gametes lacking cell walls, ciliae 0, siphonogamy; double fertilization +, ovules aborting unless fertilized; P deciduous in fruit; mature seed much larger than fertilized ovule, small [], dry [no sarcotesta], exotestal; endosperm +, cellular, development heteropolar [first division oblique, micropylar end initially with a single large cell, divisions uniseriate, chalazal cell smaller, divisions in several planes], copious, oily and/or proteinaceous, embryo short [<¼ length of seed]; plastid and mitochondrial transmission maternal; Arabidopsis-type telomeres [(TTTAGGG)n]; nuclear genome very small [1C = <1.4 pg, mean 1C = 18.1 pg, 1 pg = 109 base pairs], whole nuclear genome duplication [ε/epsilon event]; ndhB gene 21 codons enlarged at the 5' end, single copy of LEAFY and RPB2 gene, knox genes extensively duplicated [A1-A4], AP1/FUL gene, palaeo AP3 and PI genes [paralogous B-class genes] +, with "DEAER" motif, SEP3/LOFSEP and three copies of the PHY gene, [PHYB [PHYA + PHYC]]; chloroplast chlB, -L, -N, trnP-GGG genes 0.

[NYMPHAEALES [AUSTROBAILEYALES [[CHLORANTHALES + MAGNOLIIDS] [MONOCOTS [CERATOPHYLLALES + EUDICOTS]]]]]: wood fibres +; axial parenchyma diffuse or diffuse-in-aggregates; pollen monosulcate [anasulcate], tectum reticulate-perforate [here?]; ?genome duplication; "DEAER" motif in AP3 and PI genes lost, gaps in these genes.

[AUSTROBAILEYALES [[CHLORANTHALES + MAGNOLIIDS] [MONOCOTS [CERATOPHYLLALES + EUDICOTS]]]]: phloem loading passive, via symplast, plasmodesmata numerous; vessel elements with scalariform perforation plates in primary xylem; essential oils in specialized cells [lamina and P ± pellucid-punctate]; tension wood + [reaction wood: with gelatinous fibres, G-fibres, on adaxial side of branch/stem junction]; tectum reticulate; anther wall with outer secondary parietal cell layer dividing; nucellar cap + [character lost where in eudicots?]; 12BP [4 amino acids] deletion in P1 gene.

[[CHLORANTHALES + MAGNOLIIDS] [MONOCOTS [CERATOPHYLLALES + EUDICOTS]]] / MESANGIOSPERMAE: benzylisoquinoline alkaloids +; sesquiterpene synthase subfamily a [TPS-a] [?level], polyacetate derived anthraquinones + [?level]; outer epidermal walls of root elongation zone with cellulose fibrils oriented transverse to root axis; P more or less whorled, 3-merous [?here]; pollen tube growth intra-gynoecial; extragynoecial compitum 0; carpels plicate [?here]; embryo sac bipolar, 8 nucleate, antipodal cells persisting; endosperm triploid.

[MONOCOTS [CERATOPHYLLALES + EUDICOTS]]: (extra-floral nectaries +); (veins in lamina often 7-17 mm/mm2 or more [mean for eudicots 8.0]); (stamens opposite [two whorls of] P); (pollen tube growth fast).

[CERATOPHYLLALES + EUDICOTS]: ethereal oils 0.

EUDICOTS: (Myricetin, delphinidin +), asarone 0 [unknown in some groups, + in some asterids]; root epidermis derived from root cap [?Buxaceae, etc.]; (vessel elements with simple perforation plates in primary xylem); nodes 3:3; stomata anomocytic; flowers (dimerous), cyclic; protandry common; K/outer P members with three traces, ("C" +, with a single trace); A ?, filaments fairly slender, anthers basifixed; microsporogenesis simultaneous, pollen tricolpate, apertures in pairs at six points of the young tetrad [Fischer's rule], cleavage centripetal, wall with endexine; G with complete postgenital fusion, stylulus/style solid [?here]; seed coat?

[PROTEALES [TROCHODENDRALES [BUXALES + CORE EUDICOTS]]]: (axial/receptacular nectary +).

[TROCHODENDRALES [BUXALES + CORE EUDICOTS]]: benzylisoquinoline alkaloids 0; euAP3 + TM6 genes [duplication of paleoAP3 gene: B class], mitochondrial rps2 gene lost.

[BUXALES + CORE EUDICOTS]: mitochondrial rps11 gene lost.

CORE EUDICOTS / GUNNERIDAE: (ellagic and gallic acids +); leaf margins serrate; compitum + [one position]; micropyle?; γ whole nuclear genome duplication [palaeohexaploidy, gamma triplication], PI-dB motif +, small deletion in the 18S ribosomal DNA common.

[ROSIDS ET AL. + ASTERIDS ET AL.] / PENTAPETALAE: root apical meristem closed; (cyanogenesis also via [iso]leucine, valine and phenylalanine pathways); flowers rather stereotyped: 5-merous, parts whorled; P = calyx + corolla, the calyx enclosing the flower in bud, sepals with three or more traces, petals with a single trace; stamens = 2x K/C, in two whorls, internal/adaxial to the corolla whorl, alternating, (numerous, but then usually fasciculate and/or centrifugal); pollen tricolporate; G [5], G [3] also common, when [G 2], carpels superposed, placentation axile, style +, stigma not decurrent; compitum +; endosperm nuclear; fruit dry, dehiscent, loculicidal [when a capsule]; RNase-based gametophytic incompatibility system present; floral nectaries with CRABSCLAW expression; (monosymmetric flowers with adaxial/dorsal CYC expression).

[DILLENIALES [SAXIFRAGALES [VITALES + ROSIDS s. str.]]]: stipules + [usually apparently inserted on the stem].


[VITALES + ROSIDS] / ROSIDAE: anthers ± dorsifixed, transition to filament narrow, connective thin.

ROSIDS: (mucilage cells with thickened inner periclinal walls and distinct cytoplasm); if nectary +, usu. receptacular; embryo long; chloroplast infA gene defunct, mitochondrial coxII.i3 intron 0.




[SAPINDALES [HUERTEALES [MALVALES + BRASSICALES]]]: flavonols +; vessel elements with simple perforation plates; (cambium storied); petiole bundle(s) annular; style +; inner integument thicker than outer; endosperm at most scanty.


Age. The age of this node was estimated to be (104-)96, 86(-75) m.y. (Bell et al. 2010) or about 104.1 m.y. (Tank et al. 2015: Table S1).

Phylogeny. For discussion see the Sapindales page.

HUERTEALES Doweld  Main Tree.

Vessel elements with scalariform perforation plates; mucilage cells +; lamina margins toothed, stipules cauline; inflorescence cymose; flowers "small" [<8 mm across], hypanthium +, short, A = C, opposite K; G [2], ovary unilocular; fruit a berry; exotegmen rather massive, of more or less strongly laterally-compressed fibres; endosperm +, embryo at most medium. - 4 families, 6 genera, 24 species.

Note: Boldface denotes possible apomorphies, (....) denotes a feature common in the clade, exact status uncertain, [....] includes explanatory material. Note that the particular node to which many characters, particularly the more cryptic ones, should be assigned is unclear. This is partly because homoplasy is very common, in addition, basic information for all too many characters is very incomplete, frequently coming from taxa well embedded in the clade of interest and so making the position of any putative apomorphy uncertain. Then there are the not-so-trivial issues of how character states are delimited and ancestral states are reconstructed (see above).

Evolution: Divergence & Distribution. For some comments on the biogeography of Huerteales, see Christenhusz and Chase (2013).

Chemistry, Morphology, etc. Overall, the flowers of Huerteales seem to be rather similar, although there is variation in androecial position in particular. The mechanical (lignified) layer of the seed may differ in its origin within the order, but I have tentatively suggested that exotegmic seeds are a synapomorphy for the clade, however, developmental studies of seeds of taxa like Gerrardina and Petenaea are much needed.

Worberg et al. (2009) summarize what is known about this group, and information in their summary is slightly emended below; see also Yang et al. (2009) for chromosome numbers.

The morphology, anatomy, and secondary chemistry of the whole group are badly in need of detailed investigation.

Phylogeny. For the association of the Tapisciaceae and Dipentodontaceae, see Peng et al. (2003), also James Horn (pers. comm.). Perrottetia was previously in Celastraceae, if only rather uneasily so; molecular data suggested that it was to be placed near Tapiscia (M. Simmons, in Matthews & Endress 2005b), a placement with which its morphology is in general agreement. Gerrardina eylesiana shows a possibly superficial but still striking similarity to Perrottetia in particular, and there may be a similarity in seed coat anatomy between the two, yet they do not appear to be sister taxa (Worberg et al. 2009). Petenaea has been found to be rather weakly (bootstrap) associated with Gerrardina, and in general bootstrap values for relationships are low, even if posterior probabilities are higher (Christenhusz et al. 2010). Relationships within the order seem to be [[Gerrardinaceae + Petenaeaceae] [Tapisciaceae + Dipentodontaceae]] (e.g. M. Sun et al. 2016), although Dipentodon is sister to Tapisciaceae in some analyses (Worberg et al. 2009).

Classification. Like Crossosomatales, Huerteales have accumulated several small families; when the clade is better known, rationalization (= reduction in number) may be in order - we hardly know enough so say whether or not the families are similar other than in gross phenetic terms, and none is of any size.

Includes Dipentodontaceae, Gerrardinaceae, Petenaeaceae, Tapisciaceae.

Synonymy: Dipentodontales C. Y. Wu et al. - Huerteanae Thorne & Reveal

[Gerrardinaceae + Petenaeaceae]: leaves spiral, lamina margins serrate; nectary inside A; placentation apical.

GERRARDINACEAE M. H. Alford  Back to Main Tree


Petiole bundle arcuate, or three in an arc; mucilage cells in epidermis; lamina with vein proceeding to glandular tooth and with a branch to the vein above; C clawed, thin, small; A opposite C; nectary cupular; stigma?; ovules?; seed with a fleshy outer layer, lignified laterally-compressed cells inside; endosperm ?type, embryo minute; n = ?

1[list]/2. Eastern and southern Africa (map: data from Trop. Afr. Fl. Pl. Ecol. Distr. 1. 2003; GBIF, vii.2009).

Chemistry, Morphology, etc. Gerrardina foliosa appears to have clawed petals and three sepals larger than the others (ToL, vii.2009).

See Alford (2006) for what little is known about the family; the description of the venation is modified from that source. Christenhusz et al. (2010) describe the wood anatomy of young stems. In addition, see G. eylesiana: stem anatomy, J. D. & E. G. Chapman 9242; leaf anatomy, Brass 16641; seed anatomy, Iversen et al. 85748; G. foliosa: stem and seed anatomy, Strey 11052; leaf anatomy, Hilliard & Burtt 6751.

Previous Relationships. Gerrardina has previously been included in Flacourtiaceae.

PETENAEACEAE Christenhusz, M. F. Fay & M. W. Chase   Back to Main Tree


Vessels in radial multiples; lamina venation palmate, stipules +; P +, uniseriate, valvate, with adaxial moniliform hairs and basal glands; A 8-12; G [5], placentae pendent, style long; ovules many; berry lobed, with a persistent style; n = ?

1/1: Petenaea cordata. Central America (map: from Christenhusz et al. 2010).

Chemistry, Morphology, etc. For the wood anatomy of Petenaea, see also Kukachka (1962). The genus is described as having minute stipules (Bayer 2002). For some general information, see Christenhusz et al. (2010).

Previous Relationships. Petenaea has previously been linked with Tiliaceae and Elaeaocarpaceae (Mabberley 2009), Bayer et al. (1999, but sampling) had suggested on molecular data that it might be associated with Malvales, being tentatively associated with Muntingiaceae (see also A.P.G. 2003).

[Tapisciaceae + Dipentodontaceae]: wood parenchyma 0.

Age. The age of this clade is around 89.8 m.y. (Tank et al. 2015: Table S2).

TAPISCIACEAE Takhtajan  Back to Main Tree


Wood fluorescing; fibres with simple pits; nodes also 4:4, 5:5; petiole bundle annular, fibrous sheath 0; stomata ± paracytic; leaves spiral, compound, odd-pinnately or trifoliolate, glands or stipels at articulations, (stipules obscure); K connate or not; (anthers extrorse, inflexed - Huertea); pollen colpate; nectary not vascularized (0); G septate or not, style hollow, apically branched or styles ± separate, stigma?; ovule 1/carpel, basal, apotropous, outer integument 2-3 cells across, inner integument 2-3 cells across, parietal tissue 4-6 cells across, hypostase +; (fruit a drupe); testa thin-walled, (mesotesta sclerotic), chalaza/hypostase ballooning into endosperm; endosperm ?type, embryo medium to small, coyledons flat; n = 13, 15.

2[list]/5. China, West Indies and N.W. South America (map: from Ying et al. 1993; GBIF and TROPICOS vii.2009; fossils [blue] from Manchester 1988). [Photo - Fruit]

Evolution: Divergence & Distribution. The distinctive fruits of Tapiscia are known from the Eocene onwards in Europe, and somewhat later in North America (Manchester 1988; Manchester et al. 2009 and references).

Chemistry, Morphology, etc. Dickison (1987b) noted that small accessory traces from the central bundle also proceeded into the leaves.

The pollen of Tapisciaceae is smaller than that of Staphyleaceae, being only some 13-18 µm long (Jin & Wei 2002). There is quite a prominent nectariferous disc in Huertea, but it is not vascularized (Dickison 1986a; Danilova 1996). In Tapiscia sinensis, at least, the fruit takes about eighteen months to develop, the receptacle also becoming inflated and suberised (Liu et al. 2008; Teng & Liu 2009). In the ripe fruit the seed is born in the middle of the loculus, perhaps partly due to the strong post-fertilization development of the hypostase (Liu & Ni 2013).

See also Corner (1976: seed anatomy), Carlquist and Hoekman (1985: wood anatomy), Dickison (1987a: pollen morphology) and Wei et al. (2002: pollen of Tapiscia), and for general information, see Kubitzki (2002d).

Previous Relationships. The two genera that make up the family were long included in Staphyleaceae (but see Corner 1976 for differences in seed coat and Dickison 1987b for a table of differences separating them from the rest of Staphyleaceae) and placed in Sapindales by Cronquist (1981), while a segregated Tapisciaceae were still included in Sapindales by Takhtajan (1997).

Synonymy: Huerteaceae Doweld

DIPENTODONTACEAE Merrill, nom. cons.   Back to Main Tree

Trees; ?vessel elements; leaves two-ranked, secondary veins pinnate, stipules +; K and C similar, K ± valvate; ovules 2/carpel, basal, erect, micropyle endostomal [Perrottetia]; K + C persistent in fruit; endosperm ?type.

2/[list]16. Southeast Asia to Malesia, Mexico to Peru.


1. Dipentodon Dunn

Petiole bundle arcuate; ?stomata; hairs uniseriate; stipules lobed; inflorescence umbellate; flowers 5(-7)-merous, hypanthium spreading; K valvate, basally connate, C valvate; nectaries opposite petals [?staminodia]; G [3], placentation axile basally, ovules borne on top of placenta, with a free-central prolongation, stigma punctate; ovule ?morphology; fruit laterally compressed, ?septicidally dehiscent from the base upwards, funicle ?much enlarged; seed single; coat with obliquely-lying lignified ribbon cells, collapsed polygonal cells underneath; embryo ?very short; n = 17.

1/1: Dipentodon sinicus. S. China and adjacent Burma, India and Vietnam (map: from Yuan et al. 2008).


2. Perrottetia Kunth

(Vessel elements simple); paratracheal parenchyma +; sclereids +; petiole bundle depressed annular with an adaxial inverted bundle and wing bundles; stomata anomocytic (anisocytic); (leaves spiral); inflorescence thyrsoid, ultimate units ± cymose; (flowers 4-8-merous); ovary septate, style short; ovules epi-apotropous; testa thin-walled, ± fleshy, inner tangential walls of endotesta with rod-like structures, exotegmen ridged; embryo medium; n = 10.

1/ca 15. China to Malesia and N.E. Australia, Hawaii, Mexico to Bolivia (map: from Ding Hou 1962; Thorne 1972; FoC vol. 11. 2008: New World rather approximate).

Chemistry, Morphology, etc. The flowers of Perrottetia may be imperfect; Ding Hou (1962) described and illustrated the nectary as being disc-like and entire (c.f. Bachelier & Merran 2014). It has idioblasts in the sepals with thickened inner tangential walls, and the seeds lack an aril (Corner 1976; c.f. Ding Hou 1962; Yang et al. 2009).

Mabberley (1997) described the leaves of Dipentodon as being spiral. In the two flowers that I examined I could find only a single well-developed ovule in each.

For general information on Perrottetia, see Ding Hou (1962), for floral morphology, etc., see Matthews and Endress (2005b: also mucilage cells!), for mostly stomatal morphology, see den Hartog and Baas (1978), for vegetative anatomy, see P. sessiliflora - Cogollo et al. 7294. For general information on Dipentodon, see Merrill (1941), for pollen, see Lobreau-Callen (1982), and for floral morphology see Liu and Cheng (1991: comparison with putatively related taxa) and Bachelier and Matthews (2014).

Previous relationships. Dipentodontaceae were included in Santalales by Cronquist (1981) because of apparent similarities in gynoecial structure, but the toothed lamina margin and large, lobed stipules suggested that this was incorrect. They were placed by Takhtajan (1997) in his Violales (= Malpighiales), while Wu et al. (2002, 2003) recognised a Dipentodontales C. Y. Wu et al. in Dilleniidae, where it was placed between Passiflorales (which included Caricaceae) and Violales (Cucurbitales were next).